points to while analyzing all other fields.
Use FoldingSetNodeID to produce a good hash. This dramatically decreases run
times.
Emit thunks. This means that it can look at all functions regardless of what
the linkage is or if the address is taken, but unfortunately some small
functions can be even shorter than the thunk because our backend doesn't yet
realize it can just turn these into jumps. This means that this pass will
pessimize code on average.
llvm-svn: 73222
Emission for globals, using the correct data sections
Function alignment can be computed for each target using TargetELFWriterInfo
Some small fixes
llvm-svn: 73201
immediately casted. At present, this is just a minor code
simplification. In the future, the expansion code may be able
to make better choices if it knows what the desired result
type will be.
llvm-svn: 73137
Also create isValidElementType for ArrayType, PointerType, StructType and
VectorType.
Make LLParser use them. This closes up some holes like an assertion failure on:
%x = type {label}
but largely doesn't change any semantics. The only thing we accept now which
we didn't before is vectors of opaque type such as "<4 x opaque>". The opaque
can be resolved to an int or float when linking.
llvm-svn: 73016
on x86 to handle more cases. Fix a bug in said code that would cause it
to read past the end of an object. Rewrite the code in
SelectionDAGLegalize::ExpandBUILD_VECTOR to be a bit more general.
Remove PerformBuildVectorCombine, which is no longer necessary with
these changes. In addition to simplifying the code, with this change,
we can now catch a few more cases of consecutive loads.
llvm-svn: 73012
nodes for vectors with an i16 element type. Add an optimization for
building a vector which is all zeros/undef except for the bottom
element, where the bottom element is an i8 or i16.
llvm-svn: 72988
integer type to be consistent with normal operation legalization. No visible
change because nothing is actually using this at the moment.
llvm-svn: 72980
Update code generator to use this attribute and remove NoImplicitFloat target option.
Update llc to set this attribute when -no-implicit-float command line option is used.
llvm-svn: 72959
build vectors with i64 elements will only appear on 32b x86 before legalize.
Since vector widening occurs during legalize, and produces i64 build_vector
elements, the dag combiner is never run on these before legalize splits them
into 32b elements.
Teach the build_vector dag combine in x86 back end to recognize consecutive
loads producing the low part of the vector.
Convert the two uses of TLI's consecutive load recognizer to pass LoadSDNodes
since that was required implicitly.
Add a testcase for the transform.
Old:
subl $28, %esp
movl 32(%esp), %eax
movl 4(%eax), %ecx
movl %ecx, 4(%esp)
movl (%eax), %eax
movl %eax, (%esp)
movaps (%esp), %xmm0
pmovzxwd %xmm0, %xmm0
movl 36(%esp), %eax
movaps %xmm0, (%eax)
addl $28, %esp
ret
New:
movl 4(%esp), %eax
pmovzxwd (%eax), %xmm0
movl 8(%esp), %eax
movaps %xmm0, (%eax)
ret
llvm-svn: 72957
`-fomit-frame-pointer', we would lack the DW_CFA_advance_loc information for a
lot of function, and then they would be `0'. The linker (at least on Darwin)
needs to encode the stack size. In some cases, the stack size is too large to
directly encode. So the linker checks to see if there is a "subl $xxx,%esp"
instruction at the point where the `DW_CFA_def_cfa_offset' says the pc was. If
so, the compact encoding records the offset in the function to where the stack
size is embedded. But because the `DW_CFA_advance_loc' instructions are missing,
it looks before the function and dies.
So, instead of emitting the EH debug label before the stack adjustment
operations, emit it afterwards, right before the frame move stuff.
llvm-svn: 72898
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
Update code generator to use this attribute and remove DisableRedZone target option.
Update llc to set this attribute when -disable-red-zone command line option is used.
llvm-svn: 72894
using Promote which won't work because i64 isn't
a legal type. It's easy enough to use Custom, but
then we have the problem that when the type
legalizer is promoting FP_TO_UINT->i16, it has no
way of telling it should prefer FP_TO_SINT->i32
to FP_TO_UINT->i32. I have uncomfortably hacked
this by making the type legalizer choose FP_TO_SINT
when both are Custom.
This fixes several regressions in the testsuite.
llvm-svn: 72891
instcombine doesn't know when it's safe. To partially compensate
for this, introduce new code to do this transformation in
dagcombine, which can use UnsafeFPMath.
llvm-svn: 72872
carry GlobalBaseReg, and GlobalRetAddr too in Alpha's case. This
eliminates the need for them to search through the
MachineRegisterInfo livein list in order to identify these
virtual registers. EmitLiveInCopies is now the only user of the
virtual register portion of MachineRegisterInfo's livein data.
llvm-svn: 72802
EAX = ..., AX<imp-def>
...
= AX
This creates a double-def. Apparently this used to be necessary but is no longer needed.
Thanks to Anton for pointing this out. Anton, I cannot create a test case without your uncommitted ARM patches. Please check in a test case for me.
llvm-svn: 72755
one new .cpp file, in preparation for merging in the Direct Object Emission
changes we're working on. No functional changes.
Fixed coding style issues on the original patch. Patch by Aaron Gray
llvm-svn: 72754
TargetData pointer. The only thing it's used for are
calls to ConstantFoldCompareInstOperands and
ConstantFoldInstOperands, which both already accept a
null TargetData pointer. This makes
ConstantFoldConstantExpression easier to use in clients
where TargetData is optional.
llvm-svn: 72741
ADDC/ADDE use MVT::i1 (later, whatever it gets legalized to)
instead of MVT::Flag. Remove CARRY_FALSE in favor of 0; adjust
all target-independent code to use this format.
Most targets will still produce a Flag-setting target-dependent
version when selection is done. X86 is converted to use i32
instead, which means TableGen needs to produce different code
in xxxGenDAGISel.inc. This keys off the new supportsHasI1 bit
in xxxInstrInfo, currently set only for X86; in principle this
is temporary and should go away when all other targets have
been converted. All relevant X86 instruction patterns are
modified to represent setting and using EFLAGS explicitly. The
same can be done on other targets.
The immediate behavior change is that an ADC/ADD pair are no
longer tightly coupled in the X86 scheduler; they can be
separated by instructions that don't clobber the flags (MOV).
I will soon add some peephole optimizations based on using
other instructions that set the flags to feed into ADC.
llvm-svn: 72707
RewriteStoreUserOfWholeAlloca deal with tail padding because
isSafeUseOfBitCastedAllocation expects them to. Otherwise, we crash
trying to erase the bitcast.
llvm-svn: 72688
decoding. Essentially, they both map to the same column in the "opcode
extensions for one- and two-byte opcodes" table in the x86 manual. The RawFrm
complicates decoding this.
Instead, use opcode 0x01, prefix 0x01, and form MRM1r. Then have the code
emitter special case these, a la [SML]FENCE.
llvm-svn: 72556