For a default visibility external linkage definition, dso_local is set for ELF
-fno-pic/-fpie and COFF and Mach-O. Since default clang -cc1 for ELF is similar
to -fpic ("PIC Level" is not set), this nuance causes unneeded binary format differences.
To make emitted IR similar, ELF -cc1 -fpic will default to -fno-semantic-interposition,
which sets dso_local for default visibility external linkage definitions.
To make this flip smooth and enable future (dso_local as definition default),
this patch replaces (function) `define ` with `define{{.*}} `,
(variable/constant/alias) `= ` with `={{.*}} `, or inserts appropriate `{{.*}} `.
Background: Call to library arithmetic functions for div is emitted by the
compiler and it set wrong “C” calling convention for calls to these functions,
whereas library functions are declared with `spir_function` calling convention.
InstCombine optimization replaces such calls with “unreachable” instruction.
It looks like clang lacks SPIRABIInfo class which should specify default
calling conventions for “system” function calls. SPIR supports only
SPIR_FUNC and SPIR_KERNEL calling convention.
Reviewers: Erich Keane, Anastasia
Differential Revision: https://reviews.llvm.org/D92721
Rather than pushing inactive cleanups for the block captures at the
entry of a full expression and activating them during the creation of
the block literal, just call pushLifetimeExtendedDestroy to ensure the
cleanups are popped at the end of the scope enclosing the block
expression.
rdar://problem/63996471
Differential Revision: https://reviews.llvm.org/D81624
For consistency with normal instructions and clarity when reading IR,
it's best to print the %0, %1, ... names of function arguments in
definitions.
Also modifies the parser to accept IR in that form for obvious reasons.
llvm-svn: 367755
LLVM IR recently added a Type parameter to the byval Attribute, so that
when pointers become opaque and no longer have an element type the
information will still be present in IR.
For now the Type parameter is optional (which is why Clang didn't need
this change at the time), but it will become mandatory soon.
llvm-svn: 362652
Summary:
https://reviews.llvm.org/D53809 fixed wrong address space(assert in debug build)
generated for event_ret argument. But exactly the same problem exists for
event_wait_list argument. This patch should fix both.
Reviewers: Anastasia, yaxunl
Reviewed By: Anastasia
Subscribers: kristina, ebevhan, cfe-commits
Differential Revision: https://reviews.llvm.org/D59985
llvm-svn: 358151
Summary:
Emit direct call of block invoke functions when possible, i.e. in case the
block is not passed as a function argument.
Also doing some refactoring of `CodeGenFunction::EmitBlockCallExpr()`
Reviewers: Anastasia, yaxunl, svenvh
Reviewed By: Anastasia
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58388
llvm-svn: 354568
Summary:
For some reason OpenCL blocks in LLVM IR are represented as function pointers.
These pointers do not point to any real function and never get called. Actually
they point to some structure, which in turn contains pointer to the real block
invoke function.
This patch changes represntation of OpenCL blocks in LLVM IR from function
pointers to pointers to `%struct.__block_literal_generic`.
Such representation allows to avoid unnecessary bitcasts and simplifies
further processing (e.g. translation to SPIR-V ) of the module for targets
which do not support function pointers.
Patch by: Alexey Sotkin.
Reviewers: Anastasia, yaxunl, svenvh
Reviewed By: Anastasia
Subscribers: alexbatashev, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58277
llvm-svn: 354337
Some of these functions take some extraneous arguments, e.g. EltSize,
Offset, which are computable from the Type and DataLayout.
Add some asserts to ensure that the computed values are consistent
with the passed-in values, in preparation for eliminating the
extraneous arguments. This also asserts that the Type is an Array for
the calls named "Array" and a Struct for the calls named "Struct".
Then, correct a couple of errors:
1. Using CreateStructGEP on an array type. (this causes the majority
of the test differences, as struct GEPs are created with i32
indices, while array GEPs are created with i64 indices)
2. Passing the wrong Offset to CreateStructGEP in TargetInfo.cpp on
x86-64 NACL (which uses 32-bit pointers).
Differential Revision: https://reviews.llvm.org/D57766
llvm-svn: 353529
This reverts r326937 as it broke block argument handling in OpenCL.
See the discussion on https://reviews.llvm.org/D43783 .
The next commit will add a test case that revealed the issue.
llvm-svn: 343582
Always emit alloca in entry block for enqueue_kernel builtin.
Ensures the statically sized alloca is not converted to DYNAMIC_STACKALLOC
later because it is not in the entry block.
llvm-svn: 339150
Ensures the statically sized alloca is not converted to DYNAMIC_STACKALLOC
later because it is not in the entry block.
Differential Revision: https://reviews.llvm.org/D50104
llvm-svn: 338899
OpenCL runtime tracks the invoke function emitted for
any block expression. Due to restrictions on blocks in
OpenCL (v2.0 s6.12.5), it is always possible to know the
block invoke function when emitting call of block expression
or __enqueue_kernel builtin functions. Since __enqueu_kernel
already has an argument for the invoke function, it is redundant
to have invoke function member in the llvm block literal structure.
This patch removes invoke function from the llvm block literal
structure. It also removes the bitcast of block invoke function
to the generic block literal type which is useless for OpenCL.
This will save some space for the kernel argument, and also
eliminate some store instructions.
Differential Revision: https://reviews.llvm.org/D43783
llvm-svn: 326937
The following test case causes issue with codegen of __enqueue_block
void (^block)(void) = ^{ callee(id, out); };
enqueue_kernel(queue, 0, ndrange, block);
Clang first does codegen for block expression in the first line and deletes its block info.
Clang then tries to do codegen for the same block expression again for the second line,
and fails because the block info is gone.
The fix is to do normal codegen for both lines. Introduce an API to OpenCL runtime to
record llvm block invoke function and llvm block literal emitted for each AST block
expression, and use the recorded information for generating the wrapper kernel.
The EmitBlockLiteral APIs are cleaned up to minimize changes to the normal codegen
of blocks.
Another minor issue is that some clean up AST expression is generated for block
with captures, which can be stripped by IgnoreImplicit.
Differential Revision: https://reviews.llvm.org/D43240
llvm-svn: 325264
In OpenCL the kernel function and non-kernel function has different calling conventions.
For certain targets they have different argument ABIs. Also kernels have special function
attributes and metadata for runtime to launch them.
The blocks passed to enqueue_kernel is supposed to be executed as kernels. As such,
the block invoke function should be emitted as kernel with proper calling convention and
argument ABI.
This patch emits enqueued block as kernel. If a block is both called directly and passed
to enqueue_kernel, separate functions will be generated.
Differential Revision: https://reviews.llvm.org/D38134
llvm-svn: 315804
Currently block is translated to a structure equivalent to
struct Block {
void *isa;
int flags;
int reserved;
void *invoke;
void *descriptor;
};
Except invoke, which is the pointer to the block invoke function,
all other fields are useless for OpenCL, which clutter the IR and
also waste memory since the block struct is passed to the block
invoke function as argument.
On the other hand, the size and alignment of the block struct is
not stored in the struct, which causes difficulty to implement
__enqueue_kernel as library function, since the library function
needs to know the size and alignment of the argument which needs
to be passed to the kernel.
This patch removes the useless fields from the block struct and adds
size and align fields. The equivalent block struct will become
struct Block {
int size;
int align;
generic void *invoke;
/* custom fields */
};
It also changes the pointer to the invoke function to be
a generic pointer since the address space of a function
may not be private on certain targets.
Differential Revision: https://reviews.llvm.org/D37822
llvm-svn: 314932
Not all targets support vararg (e.g. amdgpu). Instead of using vararg in the emitted functions for enqueue_kernel,
this patch creates a temporary array of size_t, stores the size arguments in the temporary array
and passes it to the emitted functions for enqueue_kernel.
Differential Revision: https://reviews.llvm.org/D36678
llvm-svn: 312441
Removed ndrange_t as Clang builtin type and added
as a struct type in the OpenCL header.
Use type name to do the Sema checking in enqueue_kernel
and modify IR generation accordingly.
Review: D28058
Patch by Dmitry Borisenkov!
llvm-svn: 295311
Modify ObjC blocks impl wrt address spaces as follows:
- keep default private address space for blocks generated
as local variables (with captures);
- add global address space for global block literals (no captures);
- make the block invoke function and enqueue_kernel prototype with
the generic AS block pointer parameter to accommodate both
private and global AS cases from above;
- add block handling into default AS because it's implemented as
a special pointer type (BlockPointer) in the frontend and therefore
it is used as a pointer everywhere. This is also needed to accommodate
both private and global AS blocks for the two cases above.
- removes ObjC RT specific symbols (NSConcreteStackBlock and
NSConcreteGlobalBlock) in the OpenCL mode.
Review: https://reviews.llvm.org/D28814
llvm-svn: 293286
Summary:
We compile user opencl kernel code with spir triple. But built-ins are written in OpenCL and we compile it with triple x86_64 to be able to use x86 intrinsics. And we need address spaces to match in both cases. So, we change fake address space map in OpenCL for matching with spir.
On CPU address spaces are not really important but we'd like to preserve address space information in order to perform optimizations relying on this info like enhanced alias analysis.
Reviewers: pekka.jaaskelainen, Anastasia
Subscribers: pekka.jaaskelainen, yaxunl, bader, cfe-commits
Differential Revision: https://reviews.llvm.org/D28048
llvm-svn: 290436
This is a recommit of r290149, which was reverted in r290169 due to msan
failures. msan was failing because we were calling
`isMostDerivedAnUnsizedArray` on an invalid designator, which caused us
to read uninitialized memory. To fix this, the logic of the caller of
said function was simplified, and we now have a `!Invalid` assert in
`isMostDerivedAnUnsizedArray`, so we can catch this particular bug more
easily in the future.
Fingers crossed that this patch sticks this time. :)
Original commit message:
This patch does three things:
- Gives us the alloc_size attribute in clang, which lets us infer the
number of bytes handed back to us by malloc/realloc/calloc/any user
functions that act in a similar manner.
- Teaches our constexpr evaluator that evaluating some `const` variables
is OK sometimes. This is why we have a change in
test/SemaCXX/constant-expression-cxx11.cpp and other seemingly
unrelated tests. Richard Smith okay'ed this idea some time ago in
person.
- Uniques some Blocks in CodeGen, which was reviewed separately at
D26410. Lack of uniquing only really shows up as a problem when
combined with our new eagerness in the face of const.
llvm-svn: 290297
This commit fails MSan when running test/CodeGen/object-size.c in
a confusing way. After some discussion with George, it isn't really
clear what is going on here. We can make the MSan failure go away by
testing for the invalid bit, but *why* things are invalid isn't clear.
And yet, other code in the surrounding area is doing precisely this and
testing for invalid.
George is going to take a closer look at this to better understand the
nature of the failure and recommit it, for now backing it out to clean
up MSan builds.
llvm-svn: 290169
This patch does three things:
- Gives us the alloc_size attribute in clang, which lets us infer the
number of bytes handed back to us by malloc/realloc/calloc/any user
functions that act in a similar manner.
- Teaches our constexpr evaluator that evaluating some `const` variables
is OK sometimes. This is why we have a change in
test/SemaCXX/constant-expression-cxx11.cpp and other seemingly
unrelated tests. Richard Smith okay'ed this idea some time ago in
person.
- Uniques some Blocks in CodeGen, which was reviewed separately at
D26410. Lack of uniquing only really shows up as a problem when
combined with our new eagerness in the face of const.
Differential Revision: https://reviews.llvm.org/D14274
llvm-svn: 290149
Make handling integer parameters more flexible:
- For the number of events argument allow to pass larger
integers than 32 bits as soon as compiler can prove that
the range fits in 32 bits. If not, the diagnostic will be given.
- Change type of the arguments specifying the sizes of
the corresponding block arguments to be size_t.
Review: https://reviews.llvm.org/D26509
llvm-svn: 286849
- Accept NULL pointer as a valid parameter value for clk_event.
- Generate clk_event_t arguments of internal
__enqueue_kernel_XXX function as pointers in generic address space.
Review: https://reviews.llvm.org/D26507
llvm-svn: 286836
- Added new Builtins: enqueue_kernel, get_kernel_work_group_size
and get_kernel_preferred_work_group_size_multiple.
These Builtins use custom check to diagnose parameters of the passed Blocks
i. e. variable number of 'local void*' type params, and check different
overloads specified in Table 6.31 of OpenCL v2.0.
- IR is generated as an internal library call for each OpenCL Builtin,
reusing ObjC Block implementation.
Review: http://reviews.llvm.org/D20249
llvm-svn: 274540