Due to recent changes we cannot use OpenMP in CUDA files anymore
(PR45533) as the math handling of CUDA is different when _OPENMP is
defined. We actually want this different behavior only if we are
offloading with OpenMP to NVIDIA, thus generating NVPTX. With this patch
we do not interfere with the CUDA math handling except if we are in
NVPTX offloading mode, as indicated by the presence of __OPENMP_NVPTX__.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D78155
Summary:
In this patch we propose a temporary solution to resolving math functions for the NVPTX toolchain, temporary until OpenMP variant is supported by Clang.
We intercept the inclusion of math.h and cmath headers and if we are in the OpenMP-NVPTX case, we re-use CUDA's math function resolution mechanism.
Authors:
@gtbercea
@jdoerfert
Reviewers: hfinkel, caomhin, ABataev, tra
Reviewed By: hfinkel, ABataev, tra
Subscribers: JDevlieghere, mgorny, guansong, cfe-commits, jdoerfert
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61399
llvm-svn: 360265
This commit appears to be breaking stage-2 builds on GreenDragon. The
OpenMP wrappers for cmath and math.h are copied into the root of the
resource directory and cause a cyclic dependency in module 'Darwin':
Darwin -> std -> Darwin. This blows up when CMake is testing for modules
support and breaks all stage 2 module builds, including the ThinLTO bot
and all LLDB bots.
CMake Error at cmake/modules/HandleLLVMOptions.cmake:497 (message):
LLVM_ENABLE_MODULES is not supported by this compiler
llvm-svn: 360192
Summary:
In this patch we propose a temporary solution to resolving math functions for the NVPTX toolchain, temporary until OpenMP variant is supported by Clang.
We intercept the inclusion of math.h and cmath headers and if we are in the OpenMP-NVPTX case, we re-use CUDA's math function resolution mechanism.
Authors:
@gtbercea
@jdoerfert
Reviewers: hfinkel, caomhin, ABataev, tra
Reviewed By: hfinkel, ABataev, tra
Subscribers: mgorny, guansong, cfe-commits, jdoerfert
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61399
llvm-svn: 360063
Summary:
These all had somewhat custom file headers with different text from the
ones I searched for previously, and so I missed them. Thanks to Hal and
Kristina and others who prompted me to fix this, and sorry it took so
long.
Reviewers: hfinkel
Subscribers: mcrosier, javed.absar, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60406
llvm-svn: 357941
Partial fix for the clang Bug 38811 "Clang fails to compile with CUDA-9.x on Windows".
[Synopsis]
__sptr is a new Microsoft specific modifier (https://docs.microsoft.com/en-us/cpp/cpp/sptr-uptr?view=vs-2017).
[Solution]
Replace all `__sptr` occurrences with `__s` (and all `__cptr` with `__c` as well) to eliminate the below clang compilation error on Windows.
In file included from C:\GIT\LLVM\trunk\llvm-64-release-vs2017-15.9.5\dist\lib\clang\9.0.0\include\__clang_cuda_runtime_wrapper.h:162:
C:\GIT\LLVM\trunk\llvm-64-release-vs2017-15.9.5\dist\lib\clang\9.0.0\include\__clang_cuda_device_functions.h:524:33: error: expected expression
return __nv_fast_sincosf(__a, __sptr, __cptr);
^
Reviewed by: Artem Belevich
Differential Revision: http://reviews.llvm.org/D59423
llvm-svn: 356291
CUDA-9.2 made all integer SIMD functions into compiler builtins,
so clang no longer has access to the implementation of these
functions in either headers of libdevice and has to provide
its own implementation.
This is mostly a 1:1 mapping to a corresponding PTX instructions
with an exception of vhadd2/vhadd4 that don't have an equivalent
instruction and had to be implemented with a bit hack.
Performance of this implementation will be suboptimal for SM_50
and newer GPUs where PTXAS generates noticeably worse code for
the SIMD instructions compared to the code it generates
for the inline assembly generated by nvcc (or used to come
with CUDA headers).
Differential Revision: https://reviews.llvm.org/D49274
llvm-svn: 337587
Clang can use CUDA-9.1 now, though new APIs (are not implemented yet.
The major change is that headers in CUDA-9.1 went through substantial
changes that started in CUDA-9.0 which required substantial changes
in the cuda compatibility headers provided by clang.
There are two major issues:
* CUDA SDK no longer provides declarations for libdevice functions.
* A lot of device-side functions have become nvcc's builtins and
CUDA headers no longer contain their implementations.
This patch changes the way CUDA headers are handled if we compile
with CUDA 9.x. Both 9.0 and 9.1 are affected.
* Clang provides its own declarations of libdevice functions.
* For CUDA-9.x clang now provides implementation of device-side
'standard library' functions using libdevice.
This patch should not affect compilation with CUDA-8. There may be
some observable differences for CUDA-9.0, though they are not expected
to affect functionality.
Tested: CUDA test-suite tests for all supported combinations of:
CUDA: 7.0,7.5,8.0,9.0,9.1
GPU: sm_20, sm_35, sm_60, sm_70
Differential Revision: https://reviews.llvm.org/D42513
llvm-svn: 323713