This test was accidently removed when the directory structure was shuffled
around for dexter in f78c236efd.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D96968
As discussed on the RFC [0], I am sharing the set of patches that
enables checking of original Debug Info metadata preservation in
optimizations. The proof-of-concept/proposal can be found at [1].
The implementation from the [1] was full of duplicated code,
so this set of patches tries to merge this approach into the existing
debugify utility.
For example, the utility pass in the original-debuginfo-check
mode could be invoked as follows:
$ opt -verify-debuginfo-preserve -pass-to-test sample.ll
Since this is very initial stage of the implementation,
there is a space for improvements such as:
- Add support for the new pass manager
- Add support for metadata other than DILocations and DISubprograms
[0] https://groups.google.com/forum/#!msg/llvm-dev/QOyF-38YPlE/G213uiuwCAAJ
[1] https://github.com/djolertrk/llvm-di-checker
Differential Revision: https://reviews.llvm.org/D82545
The test that was failing is now forced to use the old PM.
Add a facility in the LanguageRuntime to provide a special
UnwindPlan based on the register values in a RegisterContext,
instead of using the return-pc to find a function and use its
normal UnwindPlans.
Needed when the runtime has special stack frames that we want
to show the user, but aren't actually on the real stack.
Specifically for Swift asynchronous functions.
With feedback from Greg Clayton, Jonas Devlieghere, Dave Lee
<rdar://problem/70398009>
Differential Revision: https://reviews.llvm.org/D96839
Rationale:
Providing the wrong number of sparse/dense annotations was silently
ignored or caused unrelated crashes. This minor change verifies that
the provided number matches the rank.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D97034
We were creating more combinations of value and index lmul than
we needed.
I've copied the loop structure used here from VPseudoAMOEI with
all data sew values instead of just 32/64.
Similar can be done for segment loads/store.
Reviewed By: khchen
Differential Revision: https://reviews.llvm.org/D97008
This patch implements 2802. Requires _Deleter to have call operator and be move constructible. Based on D62233.
Refs PR37637.
Differential Revision: https://reviews.llvm.org/D62274
Add option -fgpu-sanitize to enable sanitizer for AMDGPU target.
Since it is experimental, it is off by default.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D96835
As discussed in D94834, we don't really need to do complicated analysis. It's safe to just drop the tail call attribute.
Differential Revision: https://reviews.llvm.org/D96926
Intrinsic ID is a 32-bit value which made each row of the table 4
byte aligned. The remaining fields used 5 bytes. This meant 3 bytes
of padding per row.
This patch breaks the table into 4 separate tables and indexes them
by properties we know about the intrinsic. NF, masked,
strided, ordered, etc. The indexed load/store tables have no
padding in their rows now.
All together this reduces the size of llc binary by ~28K.
I'm considering adding similar tables for isel of non-segment
load/store as well to cut down the size of the isel table and
probably improve our isel performance. Those tables would need to
indexed from intrinsics, IR loads/stores, gathers/scatters, and
RISCVISD opcodes. So having a table that can be indexed without using
intrinsic ID is more flexible.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D96894
This table is queried in RISCVMCInstLower without knowing
whether the instruction is a vector pseudo. Due to the way the
binary search works, we have to do log2(tablesize) checks just
to determine a non-vector instruction isn't in the table.
Conveniently, all the vector pseudos are pretty tightly
packed within the internal instruction enum. By enabling the
PrimaryKeyEarlyOut, tablegen will emit a check against the
beginning and end of the table before doing the binary search.
This gives a quick early out on the search for the majority
of non-vector instructions.
Differential Revision: https://reviews.llvm.org/D97016
mode.
We use that mode when evaluating ICEs in C, and those shortcuts could
result in ICE evaluation producing the wrong answer, specifically if we
evaluate a statement-expression as part of evaluating the ICE.
Implements parts of:
- P0898R3 Standard Library Concepts
- P1754 Rename concepts to standard_case for C++20, while we still can
Differential Revision: https://reviews.llvm.org/D96577
Currently TypePrinter lumps anonymous classes and unnamed classes in one group "anonymous" this is not correct and can be confusing in some contexts.
Differential Revision: https://reviews.llvm.org/D96807
tables.
This gives a modest AST file size reduction, while also fixing crashes
in cases where the key or data length doesn't fit into 16 bits.
Unfortunately, such situations tend to require huge test cases (such as
more than 16K modules or an overload set with 16K entries), and I
couldn't get a testcase to finish in a reasonable amount of time, so no
test is included for that bugfix.
No functionality change intended (other than the bugfix).
Found a problem in indirect call promotion in sample loader pass. Currently
if an indirect call is promoted for a target, and if the parent function is
inlined into some other function, the indirect call can be promoted for the
same target again. That is redundent which can harm performance and can cause
excessive compile time in some extreme case.
The patch fixes the issue. If a target is promoted for an indirect call, the
patch will write ICP metadata with the target call count being set to 0.
In the later ICP in sample profile loader, if it sees a target has 0 count
for an indirect call, it knows the target has been promoted and won't do
indirect call promotion for the indirect call.
The fix brings 0.1~0.2% performance on our search benchmark.
Differential Revision: https://reviews.llvm.org/D96806
The FileCollector asserts that paths passed to addDirectory are indeed
directories. For that to work, the file needs to actually exist. In the
downstream Swift fork we have tests that remove files during testing,
which resulted in this assertion getting triggered.
This patch provides two major changes:
1. Add getRelocationInfo to check if a constant will have static, dynamic, or
no relocations. (Also rename the original needsRelocation to needsDynamicRelocation.)
2. Only allow a constant with no relocations (static or dynamic) to be placed
in a mergeable section.
This will allow unused symbols that contain static relocations and happen to
fit in mergeable constant sections (.rodata.cstN) to instead be placed in
unique-named sections if -fdata-sections is used and subsequently garbage collected
by --gc-sections.
See https://lists.llvm.org/pipermail/llvm-dev/2021-February/148281.html.
Differential Revision: https://reviews.llvm.org/D95960