The rationale here is that ArchSpec is used throughout the codebase,
including in places which should not depend on the rest of the code in
the Core module.
This commit touches many files, but most of it is just renaming of
#include lines. In a couple of cases, I removed the #include ArchSpec
line altogether, as the file was not using it. In one or two places,
this necessitated adding other #includes like lldb-private-defines.h.
llvm-svn: 318048
Cast to `const uint8_t *` instead of `uint8_t *` to avoid the warning
from GCC.
EmulationStateARM.cpp:206:34: warning: cast from type 'const void*' to type 'uint8_t* {aka unsigned char*}' casts away qualifiers [-Wcast-qual]
Cast to `const uint32_t *` and the explicitly cast away the const-ness
of the value. This seems pretty sketchy as the `DataExtractor` holds a
const reference to the data. However, this is no worse than before.
ObjectFilePECOFF.cpp:540:78: warning: cast from type 'const uint8_t* {aka const unsigned char*}' to type 'uint32_t* {aka unsigned int*}' casts away qualifiers [-Wcast-qual]
llvm-svn: 308489
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
This adjusts header file includes for headers and source files
in Core. In doing so, one dependency cycle is eliminated
because all the includes from Core to that project were dead
includes anyway. In places where some files in other projects
were only compiling due to a transitive include from another
header, fixups have been made so that those files also include
the header they need. Tested on Windows and Linux, and plan
to address failures on OSX and FreeBSD after watching the
bots.
llvm-svn: 299714
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
This is a large API change that removes the two functions from
StreamString that return a std::string& and a const std::string&,
and instead provide one function which returns a StringRef.
Direct access to the underlying buffer violates the concept of
a "stream" which is intended to provide forward only access,
and makes porting to llvm::raw_ostream more difficult in the
future.
Differential Revision: https://reviews.llvm.org/D26698
llvm-svn: 287152
for floating point registers was not recording them correctly. I needed to
change the EmulateInstructionARM64 unwind plans from using the DWARF
register numbering scheme to using the LLDB register numbering scheme
(because dwarf doesn't define register numbers for the 64-bit "d" registers).
Updated the EmulateInstructionARM64 unit tests to work with the LLDB
register numbering scheme and added a unit test to check the floating
point register spills & restores are correctly recorded.
https://reviews.llvm.org/D25864
<rdar://problem/28745483>
llvm-svn: 285662
plan generator.
Fix a small bug in EmulateInstructionARM64::GetFramePointerRegister
which was returning the stack pointer reg instead of fp, prevented
the unwinder from recognizing the switch to using the fp in a
function. (<rdar://problem/28663117>)
Add a new eContextRestoreStackPointer context hint so that the arm64
emulator can flag when the frame pointer value is copied back in to
the stack pointer and that should be used to compute the canonical
frame address again in an epilogue sequence. (<rdar://problem/28704862>)
Small changes to UnwindAssemblyInstEmulation to have a method we can
call without a live process/thread/etc for unit tests.
<rdar://problem/28663117>
<rdar://problem/28704862>
<rdar://problem/28509178>
llvm-svn: 283847
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177
Running the ARM instruction emulation test on a big-endian system
would fail, since the code doesn't respect endianness properly.
In EmulateInstructionARM::TestEmulation, code assumes that an
instruction opcode read in from the test file is in target byte
order, but it was in fact read in in host byte order.
More difficult to fix, the EmulationStateARM structure models
the overlapping sregs and dregs by a union in _sd_regs. This
only works correctly if the host is a little-endian system.
I've removed the union in favor of a simple array containing
the 32 sregs, and changed any code accessing dregs to explicitly
use the correct two sregs overlaying that dreg in the proper
target order.
Also, the EmulationStateARM::ReadPseudoMemory and WritePseudoMemory
track memory as a map of uint32_t values in host byte order, and
implement 64-bit memory accessing by splitting them up into two
uint32_t ones. However, callers expect memory contents to be
provided in the form of a byte array (in target byte order).
This means the uint32_t contents need to be byte-swapped on
BE systems, and when splitting up a 64-bit access into two 32-bit
ones, byte order has to be respected.
Differential Revision: http://reviews.llvm.org/D18984
llvm-svn: 266314
Scalar::GetBytes provides a non-const access to the underlying bytes
of the scalar value, supposedly allowing for modification of those
bytes. However, even with the current implementation, this is not
really possible. For floating-point scalars, the pointer returned
by GetBytes refers to a temporary copy; modifications to that copy
will be simply ignored. For integer scalars, the pointer refers
to internal memory of the APInt implementation, which isn't
supposed to be directly modifyable; GetBytes simply casts aways
the const-ness of the pointer ...
With my upcoming patch to fix Scalar::GetBytes for big-endian
systems, this problem is going to get worse, since there we need
temporary copies even for some integer scalars. Therefore, this
patch makes Scalar::GetBytes const, fixing all those problems.
As a follow-on change, RegisterValues::GetBytes must be made const
as well. This in turn means that the way of initializing a
RegisterValue by doing a SetType followed by writing to GetBytes
no longer works. Instead, I've changed SetValueFromData to do
the equivalent of SetType itself, and then re-implemented
SetFromMemoryData to work on top of SetValueFromData.
There is still a need for RegisterValue::SetType, since some
platform-specific code uses it to reinterpret the contents of
an already filled RegisterValue. To make this usage work in
all cases (even changing from a type implemented via Scalar
to a type implemented as a byte buffer), SetType now simply
copies the old contents out, and then reloads the RegisterValue
from this data using the new type via SetValueFromData.
This in turn means that there is no remaining caller of
Scalar::SetType, so it can be removed.
The only other follow-on change was in MIPS EmulateInstruction
code, where some uses of RegisterValue::GetBytes could be made
const trivially.
Differential Revision: http://reviews.llvm.org/D18980
llvm-svn: 266310
in thumb mode into one method in ArchSpec, replace checks for
specific cores in the disassembler with calls to this. Also call
this from the arm instruction emulation code.
The determination of whether a given ArchSpec is thumb-only is still
a bit of a hack, but at least the hack is consolidated into a single
place. In my original version of this patch http://reviews.llvm.org/D13578
I was calling into llvm's feature arm feature tables to make this
determination, like
#include "llvm/Support/TargetRegistry.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/../../lib/Target/ARM/ARMGenRegisterInfo.inc"
#include "llvm/../../lib/Target/ARM/ARMFeatures.h"
[...]
std::string triple (GetTriple().getTriple());
const char *cpu = "";
const char *features_str = "";
const llvm::Target *curr_target = llvm::TargetRegistry::lookupTarget(triple.c_str(), Error);
std::unique_ptr<llvm::MCSubtargetInfo> subtarget_info_up (curr_target->createMCSubtargetInfo(triple.c_str(), cpu, features_str));
if (subtarget_info_up->getFeatureBits()[llvm::ARM::FeatureNoARM])
{
return true;
}
but those tables are post-llvm-build generated and linking against them
for all of our different build system methods was a big hiccup that I
haven't had time to revisit convincingly.
I'll keep that reviews.llvm.org patch around to remind myself that I
need to take another run at linking against the necessary tables
again in llvm.
<rdar://problem/23022803>
llvm-svn: 265377
The IT instruction can specify condition code for up to 4 consecutive
instruction and it is used quite often by clang in epilogues causing
an issue when trying to unwind from locations covered by the IT
instruction and for locatins inmediately after the IT instruction.
Changes made to fix it:
* Introduce the concept of conditional instruction block what is a list
of consecutive instructions with the same condition. We update the
unwind information during the conditional instruction block and when
we reach the end of it (first instruction with a differemt condition)
then we restore the unwind information we had before the condition.
* Fix a bug in the ARM instruction emulator where neither PC nor the
ITSTATE was advanced when we reached an instruction what we can't
decode.
After the change we have no regression on android-arm running the
regular test suit and TestStandardUnwind also passes when running it
with clang as the compiler (previously it failed on an IT instruction).
Differential revision: http://reviews.llvm.org/D16814
llvm-svn: 260368
The ARM instruction emulator had 2 bugs related to the handling of the
IT instruction causing an error in single stepping:
* We haven't initialized the IT mask from the CPSR so if the last
instruction of the IT block is a branch and the condition is false
then the emulator evaluated the branch what resulted in an incorrect
pc for the next instruction.
* The ITSTATE was advanced before the execution of each instruction. As
a result the emulator was using the condition of following instruction
in every case. The ITSTATE should be edvanced after the execution of
an instruction except after an IT instruction.
Differential revision: http://reviews.llvm.org/D16772
llvm-svn: 259509
SUMMARY:
This patch merges emulation of similar instructions into a single function (wherever possible) to remove code duplication.
Reviewers: clayborg
Subscribers: mohit.bhakkad, sagar, jaydeep, lldb-commits
Differential Revision: http://reviews.llvm.org/D16051
llvm-svn: 257442
SUMMARY:
This patch merges emulation of similar instructions into a single function (wherever possible) to remove code duplication.
Reviewers: clayborg
Subscribers: mohit.bhakkad, sagar, jaydeep, lldb-commits
Differential Revision: http://reviews.llvm.org/D15886
llvm-svn: 256915
The incorrect instruction emulation caused issues in the stack unwinding
code when strd was used to push 2 register to the stack with writeback.
llvm-svn: 256000
in places where we check for Triple::IOS. They're mostly the same as far
as lldb is conerned.
.
Also add a base cass implementation for Process::IsAlive - Greg added this
last year but it didn't get upstreamed.
llvm-svn: 252227
It is a new function added to the llvm::Triple class to simplify the
checking if we are targeting android to clean up the confusion between
android being an OS or an environment.
llvm-svn: 250286
Summary: This was deprecated and removed.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13463
llvm-svn: 249452
SUMMARY:
This patch includes:
1. Emulation of prologue/epilogue and branch instructions for microMIPS.
2. Setting up alternate disassembler (to be used for microMIPS).
So there will be two disassembler instances, one for microMIPS and other for MIPS.
Appropriate disassembler will be used based on the address class of instruction address.
3. Some of the branch instructions does not have fixed sized delay slot, that means delay slot instruction can be of 2-byte or 4-byte.
For this "m_next_inst_size" has been introduced which stores the size of next instruction (i.e size of delay slot instruction in case of branch).
This can be used wherever the size of next instruction is required.
4. A minor change to use mips32 register names instead of mips64 names.
Reviewers: clayborg, tberghammer
Subscribers: mohit.bhakkad, sagar, jaydeep, nitesh.jain, lldb-commits
Differential Revision: http://reviews.llvm.org/D13282
llvm-svn: 249381