Includes a fix to emit a CheckOpcode for build_vector when immAllZerosV/immAllOnesV is used as a pattern root. This means it can't be used to look through bitcasts when used as a root, but that's probably ok. This extra CheckOpcode will ensure that the first match in the isel table will be a SwitchOpcode which is needed by the caching optimization in the ISel Matcher.
Original commit message:
Previously we had build_vector PatFrags that called ISD::isBuildVectorAllZeros/Ones. Internally the ISD::isBuildVectorAllZeros/Ones look through bitcasts, but we aren't able to take advantage of that in isel. Instead of we have to canonicalize the types of the all zeros/ones build_vectors and insert bitcasts. Then we have to pattern match those exact bitcasts.
By emitting specific matchers for these 2 nodes, we can make isel look through any bitcasts without needing to explicitly match them. We should also be able to remove the canonicalization to vXi32 from lowering, but I've left that for a follow up.
This removes something like 40,000 bytes from the X86 isel table.
Differential Revision: https://reviews.llvm.org/D58595
llvm-svn: 355784
This caused the first matcher in the isel table for many targets to Opc_Scope instead of Opc_SwitchOpcode. This leads to a significant increase in isel match failures.
llvm-svn: 355433
These arrays are both keyed by CPU name and go into the same tablegenerated file. Merge them so we only need to store keys once.
This also removes a weird space saving quirk where we used the ProcDesc.size() to create to build an ArrayRef for ProcSched.
Differential Revision: https://reviews.llvm.org/D58939
llvm-svn: 355431
The description for CPUs was just the CPU name wrapped with "Select the " and " processor". We can just do that directly in the help printer instead of making a separate version in the binary for each CPU.
Also remove the Value field that isn't needed and was always 0.
Differential Revision: https://reviews.llvm.org/D58938
llvm-svn: 355429
Apparently older versions of clang like 3.6 require an extra set of curly braces around std::array initializations. I'm told the C++ language was changed regarding this by CWG 1270.
llvm-svn: 355327
Previously we had build_vector PatFrags that called ISD::isBuildVectorAllZeros/Ones. Internally the ISD::isBuildVectorAllZeros/Ones look through bitcasts, but we aren't able to take advantage of that in isel. Instead of we have to canonicalize the types of the all zeros/ones build_vectors and insert bitcasts. Then we have to pattern match those exact bitcasts.
By emitting specific matchers for these 2 nodes, we can make isel look through any bitcasts without needing to explicitly match them. We should also be able to remove the canonicalization to vXi32 from lowering, but I've left that for a follow up.
This removes something like 40,000 bytes from the X86 isel table.
Differential Revision: https://reviews.llvm.org/D58595
llvm-svn: 355224
Subtarget features are stored in a std::bitset that has been subclassed. There is a special constructor to allow the tablegen files to provide a list of bits to initialize the std::bitset to. This constructor isn't constexpr and std::bitset doesn't support many constexpr operations either. This results in a static global constructor being used to initialize the feature bitsets in these files at startup.
To fix this I've introduced a new FeatureBitArray class that holds three 64-bit values representing the initial bit values and taught tablegen to emit hex constants for them based on the feature enum values. This makes the tablegen files less readable than they were before. I can add the list of features back as a comment if we think that's important.
I've added a method to convert from this class into the std::bitset subclass we had before. I considered making the new FeatureBitArray class just implement the std::bitset interface we need instead, but thought I'd see how others felts about that first.
I've simplified the interfaces to SetImpliedBits and ClearImpliedBits a little minimize the number of times we need to convert to the bitset.
This removes about 27K from my local release+asserts build of llc.
Differential Revision: https://reviews.llvm.org/D58520
llvm-svn: 355167
The previous sort comparator was not deterministic, i.e. in some
situations it would be possible for lhs < rhs && rhs < lhs. This was
discovered by an STL assertion in a Windows debug build of llvm-tblgen.
Differential Revision: https://reviews.llvm.org/D58687
llvm-svn: 354910
The --disassembler-options, or -M, are used to customize
the disassembler and affect its output.
The two implemented options allow selecting register names on ARM:
* With -Mreg-names-raw, the disassembler uses rNN for all registers.
* With -Mreg-names-std it prints sp, lr and pc for r13, r14 and r15,
which is the default behavior of llvm-objdump.
Differential Revision: https://reviews.llvm.org/D57680
llvm-svn: 354870
More or less all the instructions defined in the v8.2a full-fp16
extension are defined as UNPREDICTABLE if you put them in an IT block
(Thumb) or use with any condition other than AL (ARM). LLVM didn't
know that, and was happy to conditionalise them.
In order to force these instructions to count as not predicable, I had
to make a small Tablegen change. The code generation back end mostly
decides if an instruction was predicable by looking for something it
can identify as a predicate operand; there's an isPredicable bit flag
that overrides that check in the positive direction, but nothing that
overrides it in the negative direction.
(I considered the alternative approach of actually removing the
predicate operand from those instructions, but thought that it would
be more painful overall for instructions differing only in data type
to have different shapes of operand list. This way, the only code that
has to notice the difference is the if-converter.)
So I've added an isUnpredicable bit alongside isPredicable, and set
that bit on the right subset of FP16 instructions, and also on the
VSEL, VMAXNM/VMINNM and VRINT[ANPM] families which should be
unpredicable for all data types.
I've included a couple of representative regression tests, both of
which previously caused an fp16 instruction to be conditionalised in
ARM state and (with -arm-no-restrict-it) to be put in an IT block in
Thumb.
Reviewers: SjoerdMeijer, t.p.northover, efriedma
Reviewed By: efriedma
Subscribers: jdoerfert, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57823
llvm-svn: 354768
OPC_CheckCondCode is always used as operand 2 of a setcc. And its always surrounded by a MoveChild2 and a MoveParent. By having a dedicated opcode for this case we can reduce the number of bytes needed for this pattern from 4 bytes to 2.
This saves ~3000 bytes in the X86 table.
llvm-svn: 354763
Summary:
This adds support for defining patterns for global isel using pointer
types, for example:
def : Pat<(load GPR32:$src),
(p1 (LOAD GPR32:$src))>;
DAGISelEmitter will ignore the pointer information and treat these
types as integers with the same bit-width as the pointer type.
Reviewers: dsanders, rtereshin, arsenm
Reviewed By: arsenm
Subscribers: Petar.Avramovic, wdng, rovka, kristof.beyls, jfb, volkan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57065
llvm-svn: 354510
This class is used for two difference tablegen generated tables. For one of the tables the Value FeatureBitset only has one bit set. For the other usage the Implies field was unused.
This patch changes the Value field to just be an unsigned. For the usage that put a real vector in bitset, we now use the previously unused Implies field and leave the Value field unused instead.
This is good for a 16K reduction in the size of llc on my local build with all targets enabled.
llvm-svn: 354243
Summary:
While working on the GISel Combiner, I noticed I was producing location-less
error messages fairly often and set about fixing this. In the process, I
noticed quite a few places elsewhere in TableGen that also neglected to include
a relevant location.
This patch adds locations to errors that relate to a specific record (or a
field within it) and also have easy access to the relevant location. This is
particularly useful when multiclasses are involved as many of these errors
refer to the full name of a record and it's difficult to guess which substring
is grep-able.
Unfortunately, tablegen currently only supports Record granularity so it's not
currently possible to point at a specific Init so these sometimes point at the
record that caused the error rather than the precise origin of the error.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, nhaehnle
Reviewed By: nhaehnle
Subscribers: jdoerfert, nhaehnle, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58077
llvm-svn: 353862
This patch adds a -time-regions option to tablegen that can enable timers
(currently only one) that assess the performance of tablegen itself. This
can be useful for identifying scaling problems with tablegen backends.
This particular timer has allowed me to ignore time that is not attributed
the GISel combiner pass. It's useful by itself but it is particularly
useful in combination with https://reviews.llvm.org/D52954 which causes
this period of time to be annotated within Xcode Instruments which in turn
allows profile samples and recorded allocations attributed to reading
instructions to be filtered out.
llvm-svn: 353763
If we run into a pattern that looks like this:
add
(complex $x, $y)
(complex $x, $z)
We should skip the pattern instead of asserting/doing something unpredictable.
This makes us return an Error in that case, and adds a testcase for skipped
patterns.
Differential Revision: https://reviews.llvm.org/D57980
llvm-svn: 353586
Summary:
There are a few instructions that all map to the same opcode, so
when disassembling, we have to pick one. That was just the first one
before (the except_ref variant in the case of "call"), now it is the
one marked as IsCanonical in tablegen, or failing that, the shortest
name (which is typically the "canonical" one).
Also introduced a canonical "end" instruction for this purpose.
Reviewers: dschuff, tlively
Subscribers: sbc100, jgravelle-google, aheejin, llvm-commits, sunfish
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57713
llvm-svn: 353131
LLVM_ENABLE_DAGISEL_COV can be used to instrument DAGISel tablegen
selection code to show which patterns along with Complex patterns were
used when selecting instructions. Unfortunately this is turned off by
default and was broken but never tested.
This required a simple fix (missing new line) to get it to build again.
llvm-svn: 353091
This patch replaces the existing LLVMVectorSameWidth matcher with LLVMScalarOrSameVectorWidth.
The matching args must be either scalars or vectors with the same number of elements, but in either case the scalar/element type can differ, specified by LLVMScalarOrSameVectorWidth.
I've updated the _overflow intrinsics to demonstrate this - allowing it to return a i1 or <N x i1> overflow result, matching the scalar/vectorwidth of the other (add/sub/mul) result type.
The masked load/store/gather/scatter intrinsics have also been updated to use this, although as we specify the reference type to be llvm_anyvector_ty we guarantee the mask will be <N x i1> so no change in behaviour
Differential Revision: https://reviews.llvm.org/D57090
llvm-svn: 351957
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Right now we include ${TGT}GenCallingConv.inc once per each instruction
selection method implemented by ${TGT}:
- ${TGT}ISelLowering.cpp
- ${TGT}CallLowering.cpp
- ${TGT}FastISel.cpp
Instead, add a mechanism to tablegen for marking a particular convention
as "External", which causes tablegen to emit into the ::llvm namespace,
instead of as a static helper. This allows us to provide a header to
forward declare it, so we can simply call the function from all the
places it is referenced. Typically the calling convention analyzer is
called indirectly, so it doesn't benefit from inlining.
This saves a bit of final binary size, but mostly just saves object file
size:
before after diff artifact
12852K 12492K -360K X86ISelLowering.cpp.obj
4640K 4280K -360K X86FastISel.cpp.obj
1704K 2092K +388K X86CallingConv.cpp.obj
52448K 52336K -112K llc.exe
I didn't collect before numbers for X86CallLowering.cpp.obj, which is
for GlobalISel, but we should save 360K there as well.
This patch applies the strategy to the X86 backend, but there is no
reason it couldn't be applied to the other backends that implement
multiple ISel strategies, like AArch64.
Reviewers: craig.topper, hfinkel, efriedma
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D56883
llvm-svn: 351616
Summary:
The previously introduced new operand type for br_table didn't have
a disassembler implementation, causing an assert.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D56227
llvm-svn: 350366
When you define an instruction alias as a subclass of InstAlias, you
specify all the MC operands for the instruction it expands to, except
for operands that are tied to a previous one, which you leave out in
the expectation that the Tablegen output code will fill them in
automatically.
But the code in Tablegen's AsmWriter backend that skips over a tied
operand was doing it using 'if' instead of 'while', because it wasn't
expecting to find two tied operands in sequence.
So if an instruction updates a pair of registers in place, so that its
MC representation has two input operands tied to the output ones (for
example, Arm's UMLAL instruction), then any alias which wants to
expand to a special case of that instruction is likely to fail to
match, because the indices of subsequent operands will be off by one
in the generated printAliasInstr function.
This patch re-indents some existing code, so it's clearest when
viewed as a diff with whitespace changes ignored.
Reviewers: fhahn, rengolin, sdesmalen, atanasyan, asb, jholewinski, t.p.northover, kparzysz, craig.topper, stoklund
Reviewed By: rengolin
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D53816
llvm-svn: 349141
One of the GCC based bots is objecting to a vector of const EncodingAndInst's:
In file included from /usr/include/c++/8/vector:64,
from /export/users/atombot/llvm/clang-atom-d525-fedora-rel/llvm/utils/TableGen/CodeGenInstruction.h:22,
from /export/users/atombot/llvm/clang-atom-d525-fedora-rel/llvm/utils/TableGen/FixedLenDecoderEmitter.cpp:15:
/usr/include/c++/8/bits/stl_vector.h: In instantiation of 'class std::vector<const {anonymous}::EncodingAndInst, std::allocator<const {anonymous}::EncodingAndInst> >':
/export/users/atombot/llvm/clang-atom-d525-fedora-rel/llvm/utils/TableGen/FixedLenDecoderEmitter.cpp:375:32: required from here
/usr/include/c++/8/bits/stl_vector.h:351:21: error: static assertion failed: std::vector must have a non-const, non-volatile value_type
static_assert(is_same<typename remove_cv<_Tp>::type, _Tp>::value,
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/usr/include/c++/8/bits/stl_vector.h:354:21: error: static assertion failed: std::vector must have the same value_type as its allocator
static_assert(is_same<typename _Alloc::value_type, _Tp>::value,
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
llvm-svn: 349046
Summary:
Separate the concept of an encoding from an instruction. This will enable
the definition of additional encodings for the same instruction which can
be used to support variable length instruction sets in the disassembler
(and potentially assembler but I'm not working towards that right now)
without causing an explosion in the number of Instruction records that
CodeGen then has to pick between.
Reviewers: bogner, charukcs
Reviewed By: bogner
Subscribers: kparzysz, llvm-commits
Differential Revision: https://reviews.llvm.org/D52366
llvm-svn: 349041
Summary:
This fixes support in DAGISelMatcher backend for DAG nodes with multiple
result values. Previously the order of results in selected DAG nodes always
matched the order of results in ISel patterns. After the change the order of
results matches the order of operands in OutOperandList instead.
For example, given this definition from the attached test case:
def INSTR : Instruction {
let OutOperandList = (outs GPR:$r1, GPR:$r0);
let InOperandList = (ins GPR:$t0, GPR:$t1);
let Pattern = [(set i32:$r0, i32:$r1, (udivrem i32:$t0, i32:$t1))];
}
the DAGISelMatcher backend currently produces a matcher that creates INSTR
nodes with the first result `$r0` and the second result `$r1`, contrary to the
order in the OutOperandList. The order of operands in OutOperandList does not
matter at all, which is unexpected (and unfortunate) because the order of
results of a DAG node does matters, perhaps a lot.
With this change, if the order in OutOperandList does not match the order in
Pattern, DAGISelMatcherGen emits CompleteMatch opcodes with the order of
results taken from OutOperandList. Backend writers can use it to express
result reorderings in TableGen.
If the order in OutOperandList matches the order in Pattern, the result of
DAGISelMatcherGen is unaffected.
Patch by Eugene Sharygin
Reviewers: andreadb, bjope, hfinkel, RKSimon, craig.topper
Reviewed By: craig.topper
Subscribers: nhaehnle, craig.topper, llvm-commits
Differential Revision: https://reviews.llvm.org/D55055
llvm-svn: 348326
Currently, variadic operands on an MCInst are assumed to be uses,
because they come after the defs. However, this is not always the case,
for example the Arm/Thumb LDM instructions write to a variable number of
registers.
This adds a property of instruction definitions which can be used to
mark variadic operands as defs. This only affects MCInst, because
MachineInstruction already tracks use/def per operand in each instance
of the instruction, so can already represent this.
This property can then be checked in MCInstrDesc, allowing us to remove
some special cases in ARMAsmParser::isITBlockTerminator.
Differential revision: https://reviews.llvm.org/D54853
llvm-svn: 348114
Simple predicates, such as those defined by `CheckRegOperandSimple` or
`CheckImmOperandSimple`, were not being negated when used with `CheckNot`.
This change fixes this issue by defining the previously declared methods to
handle simple predicates.
Differential revision: https://reviews.llvm.org/D55089
llvm-svn: 348034
Summary:
This simplifies writing predicates for pattern fragments that are
automatically re-associated or commuted.
For example, a followup patch adds patterns for fragments of the form
(add (shl $x, $y), $z) to the AMDGPU backend. Such patterns are
automatically commuted to (add $z, (shl $x, $y)), which makes it basically
impossible to refer to $x, $y, and $z generically in the PredicateCode.
With this change, the PredicateCode can refer to $x, $y, and $z simply
as `Operands[i]`.
Test confirmed that there are no changes to any of the generated files
when building all (non-experimental) targets.
Change-Id: I61c00ace7eed42c1d4edc4c5351174b56b77a79c
Reviewers: arsenm, rampitec, RKSimon, craig.topper, hfinkel, uweigand
Subscribers: wdng, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D51994
llvm-svn: 347992
When tablegen detects that there exist two subregister compositions that
result in the same value for some register, it will emit a warning. This
kind of an overlap in compositions should only happen when it is caused
by a user-defined composition. It can happen, however, that the user-
defined composition is not identically equal to another one, but it does
produce the same value for one or more registers. In such cases suppress
the warning.
This patch is to silence the warning when building the System Z backend
after D50725.
Differential Revision: https://reviews.llvm.org/D50977
llvm-svn: 347894
This patch adds the ability to specify via tablegen which processor resources
are load/store queue resources.
A new tablegen class named MemoryQueue can be optionally used to mark resources
that model load/store queues. Information about the load/store queue is
collected at 'CodeGenSchedule' stage, and analyzed by the 'SubtargetEmitter' to
initialize two new fields in struct MCExtraProcessorInfo named `LoadQueueID` and
`StoreQueueID`. Those two fields are identifiers for buffered resources used to
describe the load queue and the store queue.
Field `BufferSize` is interpreted as the number of entries in the queue, while
the number of units is a throughput indicator (i.e. number of available pickers
for loads/stores).
At construction time, LSUnit in llvm-mca checks for the presence of extra
processor information (i.e. MCExtraProcessorInfo) in the scheduling model. If
that information is available, and fields LoadQueueID and StoreQueueID are set
to a value different than zero (i.e. the invalid processor resource index), then
LSUnit initializes its LoadQueue/StoreQueue based on the BufferSize value
declared by the two processor resources.
With this patch, we more accurately track dynamic dispatch stalls caused by the
lack of LS tokens (i.e. load/store queue full). This is also shown by the
differences in two BdVer2 tests. Stalls that were previously classified as
generic SCHEDULER FULL stalls, are not correctly classified either as "load
queue full" or "store queue full".
About the differences in the -scheduler-stats view: those differences are
expected, because entries in the load/store queue are not released at
instruction issue stage. Instead, those are released at instruction executed
stage. This is the main reason why for the modified tests, the load/store
queues gets full before PdEx is full.
Differential Revision: https://reviews.llvm.org/D54957
llvm-svn: 347857
There are quite strong constraints on how you can use the TIED_TO
constraint between MC operands, many of which are currently not
checked until compiler run time.
MachineVerifier enforces that operands can only be tied together in
pairs (no three-way ties), and MachineInstr::tieOperands enforces that
one of the tied operands must be an output operand (def) and the other
must be an input operand (use).
Now we check these at TableGen time, so that if you violate any of
them in a new instruction definition, you find out immediately,
instead of having to wait until you compile something that makes code
generation hit one of those assertions.
Also in this commit, all the error reports in ParseConstraint now
include the name and source location of the def where the problem
happened, so that if you do trigger any of these errors, it's easier
to find the part of your TableGen input where you made the mistake.
The trunk sources already build successfully with this additional
error check, so I think no in-tree target has any of these problems.
Reviewers: fhahn, lhames, nhaehnle, MatzeB
Reviewed By: MatzeB
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53815
llvm-svn: 347743
`llvm-mca` relies on the predicates to be based on `MCSchedPredicate` in order
to resolve the scheduling for variant instructions. Otherwise, it aborts
the building of the instruction model early.
However, the scheduling model emitter in `TableGen` gives up too soon, unless
all processors use only such predicates.
In order to allow more processors to be used with `llvm-mca`, this patch
emits scheduling transitions if any processor uses these predicates. The
transition emitted for the processors using legacy predicates is the one
specified with `NoSchedPred`, which is based on `MCSchedPredicate`.
Preferably, `llvm-mca` should instead assume a reasonable default when a
variant transition is not based on `MCSchedPredicate` for a given processor.
This issue should be revisited in the future.
Differential revision: https://reviews.llvm.org/D54648
llvm-svn: 347504
A call to @llvm.trap can be expected to be cold (i.e. unlikely to be
reached in a normal program execution).
Outlining paths which unconditionally trap is an important memory
saving. As the hot/cold splitting pass (imho) should not treat all
noreturn calls as cold, explicitly mark @llvm.trap cold so that it can
be outlined.
Split out of https://reviews.llvm.org/D54244.
Differential Revision: https://reviews.llvm.org/D54329
llvm-svn: 346885
Summary:
This simplifies the code and moves everything to tablegen for consistency. This
also prepares the ground for adding issue counters.
Reviewers: gchatelet, john.brawn, jsji
Subscribers: nemanjai, mgorny, javed.absar, kbarton, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D54297
llvm-svn: 346489
Summary:
As a bonus, this arguably improves the code by making it simpler.
gcc 8 on Ubuntu 18.10 reports the following:
==39667==ERROR: AddressSanitizer: stack-use-after-scope on address 0x7fffffff8ae0 at pc 0x555555dbfc68 bp 0x7fffffff8760 sp 0x7fffffff8750
WRITE of size 8 at 0x7fffffff8ae0 thread T0
#0 0x555555dbfc67 in std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >::_Alloc_hider::_Alloc_hider(char*, std::allocator<char>&&) /usr/include/c++/8/bits/basic_string.h:149
#1 0x555555dbfc67 in std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&&) /usr/include/c++/8/bits/basic_string.h:542
#2 0x555555dbfc67 in std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > std::operator+<char, std::char_traits<char>, std::allocator<char> >(char const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&&) /usr/include/c++/8/bits/basic_string.h:6009
#3 0x555555dbfc67 in searchableFieldType /home/nha/amd/build/san/llvm-src/utils/TableGen/SearchableTableEmitter.cpp:168
(...)
Address 0x7fffffff8ae0 is located in stack of thread T0 at offset 864 in frame
#0 0x555555dbef3f in searchableFieldType /home/nha/amd/build/san/llvm-src/utils/TableGen/SearchableTableEmitter.cpp:148
Reviewers: fhahn, simon_tatham, kparzysz
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53931
llvm-svn: 345749
Before this patch, class PredicateExpander only knew how to expand simple
predicates that performed checks on instruction operands.
In particular, the new scheduling predicate syntax was not rich enough to
express checks like this one:
Foo(MI->getOperand(0).getImm()) == ExpectedVal;
Here, the immediate operand value at index zero is passed in input to function
Foo, and ExpectedVal is compared against the value returned by function Foo.
While this predicate pattern doesn't show up in any X86 model, it shows up in
other upstream targets. So, being able to support those predicates is
fundamental if we want to be able to modernize all the scheduling models
upstream.
With this patch, we allow users to specify if a register/immediate operand value
needs to be passed in input to a function as part of the predicate check. Now,
register/immediate operand checks all derive from base class CheckOperandBase.
This patch also changes where TIIPredicate definitions are expanded by the
instructon info emitter. Before, definitions were expanded in class
XXXGenInstrInfo (where XXX is a target name).
With the introduction of this new syntax, we may want to have TIIPredicates
expanded directly in XXXInstrInfo. That is because functions used by the new
operand predicates may only exist in the derived class (i.e. XXXInstrInfo).
This patch is a non functional change for the existing scheduling models.
In future, we will be able to use this richer syntax to better describe complex
scheduling predicates, and expose them to llvm-mca.
Differential Revision: https://reviews.llvm.org/D53880
llvm-svn: 345714
Summary:
The pfm counters are now in the ExegesisTarget rather than the
MCSchedModel (PR39165).
This also compresses the pfm counter tables (PR37068).
Reviewers: RKSimon, gchatelet
Subscribers: mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D52932
llvm-svn: 345243
Summary:
Some targets have very long encodings and uint64_t isn't sufficient. uint128_t
isn't portable so such targets need to use an object instead.
There is one catch with this at the moment, no string of bits extracted
from the encoding may exceeed 64-bits. Fields are still permitted to
exceed 64-bits so long as they aren't one contiguous string of bits. If
this proves to be a problem then we can modify the generation of
fieldFromInstruction() calls to account for it but for now I've added an
assertion for this.
InsnType must either be integral or an APInt-like object that must:
* Have a static const max_size_in_bits equal to the number of bits in the encoding.
* be default-constructible and copy-constructible
* be constructible from a uint64_t (this is the key area the interface deviates
from APInt since this constructor does not take the bit width)
* be constructible from an APInt (this can be private)
* be convertible to uint64_t
* Support the ~, &,, ==, !=, and |= operators with other objects of the same type
* Support shift (<<, >>) with signed and unsigned integers on the RHS
* Support put (<<) to raw_ostream&
Reviewers: bogner, charukcs
Subscribers: nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D52100
llvm-svn: 345056
Summary:
Replace its functionality with a TableGen InstrInfo relational
instruction mapping. Although arguably more complex than the TableGen
backend, the relational mapping is a smaller maintenance burden than a
TableGen backend.
Reviewers: aardappel, aheejin, dschuff
Subscribers: mgorny, sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D53307
llvm-svn: 344962
This patch adds the ability to identify instructions that are "move elimination
candidates". It also allows scheduling models to describe processor register
files that allow move elimination.
A move elimination candidate is an instruction that can be eliminated at
register renaming stage.
Each subtarget can specify which instructions are move elimination candidates
with the help of tablegen class "IsOptimizableRegisterMove" (see
llvm/Target/TargetInstrPredicate.td).
For example, on X86, BtVer2 allows both GPR and MMX/SSE moves to be eliminated.
The definition of 'IsOptimizableRegisterMove' for BtVer2 looks like this:
```
def : IsOptimizableRegisterMove<[
InstructionEquivalenceClass<[
// GPR variants.
MOV32rr, MOV64rr,
// MMX variants.
MMX_MOVQ64rr,
// SSE variants.
MOVAPSrr, MOVUPSrr,
MOVAPDrr, MOVUPDrr,
MOVDQArr, MOVDQUrr,
// AVX variants.
VMOVAPSrr, VMOVUPSrr,
VMOVAPDrr, VMOVUPDrr,
VMOVDQArr, VMOVDQUrr
], CheckNot<CheckSameRegOperand<0, 1>> >
]>;
```
Definitions of IsOptimizableRegisterMove from processor models of a same
Target are processed by the SubtargetEmitter to auto-generate a target-specific
override for each of the following predicate methods:
```
bool TargetSubtargetInfo::isOptimizableRegisterMove(const MachineInstr *MI)
const;
bool MCInstrAnalysis::isOptimizableRegisterMove(const MCInst &MI, unsigned
CPUID) const;
```
By default, those methods return false (i.e. conservatively assume that there
are no move elimination candidates).
Tablegen class RegisterFile has been extended with the following information:
- The set of register classes that allow move elimination.
- Maxium number of moves that can be eliminated every cycle.
- Whether move elimination is restricted to moves from registers that are
known to be zero.
This patch is structured in three part:
A first part (which is mostly boilerplate) adds the new
'isOptimizableRegisterMove' target hooks, and extends existing register file
descriptors in MC by introducing new fields to describe properties related to
move elimination.
A second part, uses the new tablegen constructs to describe move elimination in
the BtVer2 scheduling model.
A third part, teaches llm-mca how to query the new 'isOptimizableRegisterMove'
hook to mark instructions that are candidates for move elimination. It also
teaches class RegisterFile how to describe constraints on move elimination at
PRF granularity.
llvm-mca tests for btver2 show differences before/after this patch.
Differential Revision: https://reviews.llvm.org/D53134
llvm-svn: 344334
Summary:
The predicate function is added in InlinePatternFragments, no need to
do it here. As a result, all uses of addPredicateFn are located in
InlinePatternFragments.
Test confirmed that there are no changes to generated files when
building all (non-experimental) targets.
Change-Id: I720e42e045ca596eb0aa339fb61adf6fe71034d5
Reviewers: arsenm, rampitec, RKSimon, craig.topper, hfinkel, uweigand
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D51993
llvm-svn: 343977
There are a few leftovers in rL343163 which span two lines. This commit
changes these llvm::sort(C.begin(), C.end, ...) to llvm::sort(C, ...)
llvm-svn: 343426
Summary:
By using the existing isCodeGenOnly bit in the tablegen defs, as
suggested by tlively in https://reviews.llvm.org/D51662
Tested: llvm-lit -v `find test -name WebAssembly`
Reviewers: tlively
Subscribers: dschuff, sbc100, jgravelle-google, aheejin, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52373
llvm-svn: 342772
Summary:
This ensures we have the non-register version of the instruction.
The stack version of call_indirect now wants a type index argument,
so that has been added in the existing tests.
Tested:
llvm-lit -v `find test -name WebAssembly`
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, aheejin, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D51662
llvm-svn: 342753
The reason why build #25777 might have failed is because the SmallVector move
constructor is _not_ noexcept, and the stl implementation used by that buildbot
calls _VSTD::move_if_noexcept() (according to the backtrace).
OpcodeInfo has a default move constructor, and the copy constructor is deleted.
However, as far as I can see, SmallVector doesn't declare a noexcept move
constructor. So, what I believe it is happening here is that,
_VSTD::move_if_noexcept() returns an lvalue reference and not an rvalue
reference.
This eventually triggers a copy that fails to compile.
Hopefully, using a std::vector instead of SmallVector (as it was originally
suggested by Simon in the code review) should be enough to unbreak the buildbot.
llvm-svn: 342561
This patch adds the ability for processor models to describe dependency breaking
instructions.
Different processors may specify a different set of dependency-breaking
instructions.
That means, we cannot assume that all processors of the same target would use
the same rules to classify dependency breaking instructions.
The main goal of this patch is to provide the means to describe dependency
breaking instructions directly via tablegen, and have the following
TargetSubtargetInfo hooks redefined in overrides by tabegen'd
XXXGenSubtargetInfo classes (here, XXX is a Target name).
```
virtual bool isZeroIdiom(const MachineInstr *MI, APInt &Mask) const {
return false;
}
virtual bool isDependencyBreaking(const MachineInstr *MI, APInt &Mask) const {
return isZeroIdiom(MI);
}
```
An instruction MI is a dependency-breaking instruction if a call to method
isDependencyBreaking(MI) on the STI (TargetSubtargetInfo object) evaluates to
true. Similarly, an instruction MI is a special case of zero-idiom dependency
breaking instruction if a call to STI.isZeroIdiom(MI) returns true.
The extra APInt is used for those targets that may want to select which machine
operands have their dependency broken (see comments in code).
Note that by default, subtargets don't know about the existence of
dependency-breaking. In the absence of external information, those method calls
would always return false.
A new tablegen class named STIPredicate has been added by this patch to let
processor models classify instructions that have properties in common. The idea
is that, a MCInstrPredicate definition can be used to "generate" an instruction
equivalence class, with the idea that instructions of a same class all have a
property in common.
STIPredicate definitions are essentially a collection of instruction equivalence
classes.
Also, different processor models can specify a different variant of the same
STIPredicate with different rules (i.e. predicates) to classify instructions.
Tablegen backends (in this particular case, the SubtargetEmitter) will be able
to process STIPredicate definitions, and automatically generate functions in
XXXGenSubtargetInfo.
This patch introduces two special kind of STIPredicate classes named
IsZeroIdiomFunction and IsDepBreakingFunction in tablegen. It also adds a
definition for those in the BtVer2 scheduling model only.
This patch supersedes the one committed at r338372 (phabricator review: D49310).
The main advantages are:
- We can describe subtarget predicates via tablegen using STIPredicates.
- We can describe zero-idioms / dep-breaking instructions directly via
tablegen in the scheduling models.
In future, the STIPredicates framework can be used for solving other problems.
Examples of future developments are:
- Teach how to identify optimizable register-register moves
- Teach how to identify slow LEA instructions (each subtarget defining its own
concept of "slow" LEA).
- Teach how to identify instructions that have undocumented false dependencies
on the output registers on some processors only.
It is also (in my opinion) an elegant way to expose knowledge to both external
tools like llvm-mca, and codegen passes.
For example, machine schedulers in LLVM could reuse that information when
internally constructing the data dependency graph for a code region.
This new design feature is also an "opt-in" feature. Processor models don't have
to use the new STIPredicates. It has all been designed to be as unintrusive as
possible.
Differential Revision: https://reviews.llvm.org/D52174
llvm-svn: 342555
Further extension to D51035, this patch avoids all repeated predicates[] matching by caching as it collects the patterns that have multiple variants.
Saves around 25secs in debug builds of x86 -gen-dag-isel.
Differential Revision: https://reviews.llvm.org/D51839
llvm-svn: 342467
Summary:
Now uses the StackBased bit from the tablegen defs to identify
stack instructions (and ignore register based or non-wasm instructions).
Also changed how we store operands, since we now have up to 16 of them
per instruction. To not cause static data bloat, these are compressed
into a tiny table.
+ a few other cleanups.
Tested:
- MCTest
- llvm-lit -v `find test -name WebAssembly`
Reviewers: dschuff, jgravelle-google, sunfish, tlively
Subscribers: sbc100, aheejin, llvm-commits
Differential Revision: https://reviews.llvm.org/D51320
llvm-svn: 341081
Summary:
Add comments to help readers avoid having to read tablegen backends to
understand the code. Also remove unecessary breaks from the output.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D51371
llvm-svn: 340864
CodeGenDAGPatterns::GenerateVariants is a costly function in many tblgen commands (33.87% of the total runtime of x86 -gen-dag-isel), and due to the O(N^2) nature of the function, there are a high number of repeated comparisons of the pattern's vector<Predicate>.
This initial patch at least avoids repeating these comparisons for every Variant in a pattern. I began investigating caching all the matches before entering the loop but hit issues with how best to store the data and how to update the cache as patterns were added.
Saves around 15secs in debug builds of x86 -gen-dag-isel.
Differential Revision: https://reviews.llvm.org/D51035
llvm-svn: 340837
Summary:
The new stackification backend generates the giant switch statement
used to translate instructions to their stackified forms. I did this
because it was more interesting than adding all the different vector
versions of the various SIMD instructions to the switch statment
manually.
Reviewers: aardappel, aheejin, dschuff
Subscribers: mgorny, sbc100, jgravelle-google, sunfish, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D51318
llvm-svn: 340781
Summary:
So far, `isReturn` property is used to mean both a return instruction
from a functon and the end of an EH scope, a scope that starts with a EH
scope entry BB and ends with a catchret or a cleanupret instruction.
Because WinEH uses funclets, all EH-scope-ending instructions are also
real return instruction from a function. But for wasm, they only serve
as the end marker of an EH scope but not a return instruction that
exits a function. This mismatch caused incorrect prolog and epilog
generation in wasm EH scopes. This patch fixes this.
This patch is in the same vein with rL333045, which splits
`MachineBasicBlock::isEHFuncletEntry` into `isEHFuncletEntry` and
`isEHScopeEntry`.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D50653
llvm-svn: 340325
We were just caching the MVT set of legal types, then every call creating a new TypeSetByHwMode with it and passing it back on the stack. There's no need to do this - we can create and cache the whole TypeSetByHwMode once and return a const reference to it each time.
Additionally, TypeInfer::expandOverloads wasn't making use of the fact that the cache just contains a default mode containing all the types.
Saves up to 30secs in debug builds of x86 -gen-dag-isel.
Differential Revision: https://reviews.llvm.org/D50903
llvm-svn: 340042
This operator is called a great deal, by checking for the cheap isSimple equality cases first (a common occurrence) we can improve performance as we avoid a lot of std::map find/iteration in hasDefault.
isSimple also means that a default value is present, so we can avoid some hasDefault calls.
This also avoids a rather dodgy piece of logic that was checking for isSimple() && !VTS.isSimple() but not the inverse - it now uses the general hasDefault mode comparison test instead.
Saves around 15secs in debug builds of x86 -gen-dag-isel.
Differential Revision: https://reviews.llvm.org/D50841
llvm-svn: 339890
I noticed this during profiling of tablegen (PR28222) that we were calling Child->getType(0) which creates a ValueTypeByHwMode on the fly from the requested internal TypeSetByHwMode type and returns it by value, we then treat it as a TypeSetByHwMode reference which involves constructing a new TypeSetByHwMode on the stack with a large amount of std::map iterating/copying all along the way.
I am not an expert on tablegen, but AFAICT this is all unnecessary and we should be calling Child->getExtType(0) which returns the original TypeSetByHwMode by reference.
This gives me a 90sec reduction in msvc debug builds of x86 -gen-dag-isel.
Differential Revision: https://reviews.llvm.org/D50789
llvm-svn: 339812
This patch removes redundant template argument `TargetName` from TIIPredicate.
Tablegen can always infer the target name from the context. So we don't need to
force users of TIIPredicate to always specify it.
This allows us to better modularize the tablegen class hierarchy for the
so-called "function predicates". class FunctionPredicateBase has been added; it
is currently used as a building block for TIIPredicates. However, I plan to
reuse that class to model other function predicate classes too (i.e. not just
TIIPredicates). For example, this can be a first step towards implementing
proper support for dependency breaking instructions in tablegen.
This patch also adds a verification step on TIIPredicates in tablegen.
We cannot have multiple TIIPredicates with the same name. Otherwise, this will
cause build errors later on, when tablegen'd .inc files are included by cpp
files and then compiled.
Differential Revision: https://reviews.llvm.org/D50708
llvm-svn: 339706
The behavior in 64-bit mode is different between Intel and AMD CPUs. Intel ignores the 0x66 prefix. AMD does not. objump doesn't ignore the 0x66 prefix. Since LLVM aims to match objdump behavior, we should do the same.
While I was trying to fix this I had change brtarget16/32 to use ENCODING_IW/ID instead of ENCODING_Iv to get the 0x66+REX.W case to act sort of sanely. It's still wrong, but that's a problem for another day.
The change in encoding exposed the fact that 16-bit mode disassembly of relative jumps was creating JMP_4 with a 2 byte immediate. It should have been JMP_2. From just printing you can't tell the difference, but if you dumped the encoding it wouldn't have matched what we started with.
While fixing that, it exposed that jo/jno opcodes were missing from the switch that this patch deleted and there were no test cases for them.
Fixes PR38537.
llvm-svn: 339622
This is a follow-up of r339552.
As pointed out by Craig in D50566, we don't need a formatted_raw_ostream to
indent strings. We can use instead raw_ostream::indent().
Internally, class PredicateExpander already keeps track of the current
indentation level. Also, the grammar for predicates is well parenthesized, and
therefore we don't need to use a formatted_raw_ostream to continuously track the
column number. Instead we can safely replace all the uses of
formatted_raw_ostream::PadToColumn() with uses of raw_ostream::indent().
By replacing formatted_raw_ostream with a simpler raw_ostream, we also avoid the
implicit check on the newline character on every print to stream.
No functional change intended.
llvm-svn: 339577
This patch refactors the logic that expands predicates of a variant scheduling
class.
The idea is to improve the readability of the auto-generated code by removing
redundant parentheses around predicate expressions, and by removing redundant
if(true) statements.
This patch replaces the definition of NoSchedPred in TargetSchedule.td with an
instance of MCSchedPredicate. The new definition is sematically equivalent to
the previous one. The main difference is that now SubtargetEmitter knows that it
represents predicate "true".
Before this patch, we always generated an if (true) for the default transition
of a variant scheduling class.
Example (taken from AArch64GenSubtargetInfo.inc) :
```
if (SchedModel->getProcessorID() == 3) { // CycloneModel
if ((TII->isScaledAddr(*MI)))
return 927; // (WriteIS_WriteLD)_ReadBaseRS
if ((true))
return 928; // WriteLD_ReadDefault
}
```
Extra parentheses were also generated around the predicate expressions.
With this patch, we get the following auto-generated checks:
```
if (SchedModel->getProcessorID() == 3) { // CycloneModel
if (TII->isScaledAddr(*MI))
return 927; // (WriteIS_WriteLD)_ReadBaseRS
return 928; // WriteLD_ReadDefault
}
```
The new auto-generated code behaves exactly the same as before. So, technically
this is a non functional change.
Differential revision: https://reviews.llvm.org/D50566
llvm-svn: 339552
Part of the logic has been moved to helper functions to (hopefully) improve
readability.
Added a few code comments to better describe how the algorithm works.
No functional change intended.
llvm-svn: 339421
This patch introduces tablegen class MCStatement.
Currently, an MCStatement can be either a return statement, or a switch
statement.
```
MCStatement:
MCReturnStatement
MCOpcodeSwitchStatement
```
A MCReturnStatement expands to a return statement, and the boolean expression
associated with the return statement is described by a MCInstPredicate.
An MCOpcodeSwitchStatement is a switch statement where the condition is a check
on the machine opcode. It allows the definition of multiple checks, as well as a
default case. More details on the grammar implemented by these two new
constructs can be found in the diff for TargetInstrPredicates.td.
This patch makes it easier to read the body of auto-generated TargetInstrInfo
predicates.
In future, I plan to reuse/extend the MCStatement grammar to describe more
complex target hooks. For now, this is just a first step (mostly a minor
cosmetic change to polish the new predicates framework).
Differential Revision: https://reviews.llvm.org/D50457
llvm-svn: 339352
Summary:
The interface to get size and spill size of a register
was moved from MCRegisterInfo to TargetRegisterInfo over
a year ago. Afaik the old interface has bee around
to give out-of-tree targets a chance to adapt to the
new interface.
One problem with the old MCRegisterClass::PhysRegSize was that
it represented the size of a register as "size in bits" / 8.
So a register had to be a multiple of eight bits wide for the
size to be correct (and the byte size for the target needed to
be eight bits).
Reviewers: kparzysz, qcolombet
Reviewed By: kparzysz
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47199
llvm-svn: 339350
Summary:
This particular map is hardly ever queried and has a phased usage pattern (insert,
iterate, query, insert, iterate) so it's a good candidate for a sorted vector and
std::lower_bound.
This significantly reduces the run time of runTargetDesc() in some circumstances.
One llvm-tblgen invocation in my build improves the time spent in runTargetDesc()
from 9.86s down to 0.80s (~92%) without changing the output. The same invocation
also has 2GB less allocation churn.
Reviewers: bogner, rtereshin, aditya_nandakumar, volkan
Reviewed By: rtereshin
Subscribers: mgrang, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D50272
llvm-svn: 339208