to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This function checks whether the mappings in the interval map overlap
with the given range [a;b]. The motivation is to enable checking for
overlap before inserting a new interval into the map.
Reviewers: vsk, dblaikie
Subscribers: dexonsmith, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D55760
llvm-svn: 349898
Summary:
These functions currently require that the new closed interval has a length of
at least 2. They also currently permit empty half-open intervals. This patch
defines nonEmpty in each traits structure and uses it to correct the
implementations of setStart and setStop.
Reviewers: stoklund, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26064
llvm-svn: 285957
moves the iterator to end(), and it is valid to call it on end().
That means it is valid to call advanceTo() with any monotonic key sequence.
llvm-svn: 122092
editing of the current interval.
These methods may cause coalescing, there are corresponding set*Unchecked
methods for editing without coalescing. The non-coalescing methods are useful
for applying monotonic transforms to all keys or values in a map without
accidentally coalescing transformed and untransformed intervals.
llvm-svn: 120829
We always disallowed overlapping inserts with different values, and this makes
the insertion code smaller and faster.
If an overwriting insert is needed, it can be added as a separate method that
trims any existing intervals before inserting. The immediate use cases for
IntervalMap don't need this - they only use disjoint insertions.
llvm-svn: 120264
Implement iterator::erase() in a simple version that erases nodes when they
become empty, but doesn't try to redistribute elements among siblings for better
packing.
Handle coalescing across leaf nodes which may require erasing entries.
llvm-svn: 120226
This is a sorted interval map data structure for small keys and values with
automatic coalescing and bidirectional iteration over coalesced intervals.
Except for coalescing intervals, it provides similar functionality to std::map.
It is however much more compact for small keys and values, and hopefully faster
too.
The container object itself can hold the first few intervals without any
allocations, then it switches to a cache conscious B+-tree representation. A
recycling allocator can be shared between many containers, even between
containers holding different types.
The IntervalMap is initially intended to be used with SlotIndex intervals for:
- Backing store for LiveIntervalUnion that is smaller and faster than std::set.
- Backing store for LiveInterval with less overhead than std::vector for typical
intervals and O(N log N) merging of large intervals. 99% of virtual registers
need 4 entries or less and would benefit from the small object optimization.
- Backing store for LiveDebugVariable which doesn't exist yet, but will track
debug variables during register allocation.
This is a work in progress. Missing items are:
- Performance metrics.
- erase().
- insert() shrinkage.
- clear().
- More performance metrics.
- Simplification and detemplatization.
llvm-svn: 119787
This is a sorted interval map data structure for small keys and values with
automatic coalescing and bidirectional iteration over coalesced intervals.
Except for coalescing intervals, it provides similar functionality to std::map.
It is however much more compact for small keys and values, and hopefully faster
too.
The container object itself can hold the first few intervals without any
allocations, then it switches to a cache conscious B+-tree representation. A
recycling allocator can be shared between many containers, even between
containers holding different types.
The IntervalMap is initially intended to be used with SlotIndex intervals for:
- Backing store for LiveIntervalUnion that is smaller and faster than std::set.
- Backing store for LiveInterval with less overhead than std::vector for typical
intervals and O(N log N) merging of large intervals. 99% of virtual registers
need 4 entries or less and would benefit from the small object optimization.
- Backing store for LiveDebugVariable which doesn't exist yet, but will track
debug variables during register allocation.
This is a work in progress. Missing items are:
- Performance metrics.
- erase().
- insert() shrinkage.
- clear().
- More performance metrics.
- Simplification and detemplatization.
llvm-svn: 119772