The stack realignment code was fixed to work when there is stack realignment and
a dynamic alloca is present so this shouldn't cause correctness issues anymore.
Note that this also enables generation of AVX instructions for memset
under the assumptions:
- Unaligned loads/stores are always fast on CPUs supporting AVX
- AVX is not slower than SSE
We may need some tweaked heuristics if one of those assumptions turns out not to
be true.
Effectively reverts r58317. Part of PR2962.
llvm-svn: 167967
This patch changes the definition of negative from -0..-255 to -1..-255. I am changing this because of
a bug that we had in some of the patterns that assumed that "subs" of zero does not set the carry flag.
rdar://12028498
llvm-svn: 167963
When an instruction as written requires 32-bit mode and we're assembling
in 64-bit mode, or vice-versa, issue a more specific diagnostic about
what's wrong.
rdar://12700702
llvm-svn: 167937
chain is correctly setup.
As an example, if the original load must happen before later stores, we need
to make sure the constructed VZEXT_LOAD is constrained to be before the stores.
rdar://12684358
llvm-svn: 167859
physical register as candidate for common subexpression elimination
in MachineCSE.
This fixes a bug on PowerPC in MultiSource/Applications/oggenc/oggenc
caused by MachineCSE invalidly merging two separate DYNALLOC insns.
llvm-svn: 167855
On MSYS, 70 is not seen, but 1.
r127726 should be reworked. Candidate options are;
1) Use not exit(70), but _exit(70), in report_fatal_error().
2) Return with _exit(70) in ~raw_ostream().
llvm-svn: 167836
Previously in a vector of pointers, the pointer couldn't be any pointer type,
it had to be a pointer to an integer or floating point type. This is a hassle
for dragonegg because the GCC vectorizer happily produces vectors of pointers
where the pointer is a pointer to a struct or whatever. Vector getelementptr
was restricted to just one index, but now that vectors of pointers can have
any pointer type it is more natural to allow arbitrary vector getelementptrs.
There is however the issue of struct GEPs, where if each lane chose different
struct fields then from that point on each lane will be working down into
unrelated types. This seems like too much pain for too little gain, so when
you have a vector struct index all the elements are required to be the same.
llvm-svn: 167828
This patch migrates the math library call simplifications from the
simplify-libcalls pass into the instcombine library call simplifier.
I have typically migrated just one simplifier at a time, but the math
simplifiers are interdependent because:
1. CosOpt, PowOpt, and Exp2Opt all depend on UnaryDoubleFPOpt.
2. CosOpt, PowOpt, Exp2Opt, and UnaryDoubleFPOpt all depend on
the option -enable-double-float-shrink.
These two factors made migrating each of these simplifiers individually
more of a pain than it would be worth. So, I migrated them all together.
llvm-svn: 167815
Don't choose a vectorization plan containing only shuffles and
vector inserts/extracts. Due to inperfections in the cost model,
these can lead to infinite recusion.
llvm-svn: 167811
If we have a type 'int a[1]' and a type 'int b[0]', the generated DWARF is the
same for both of them because we use the 'upper_bound' attribute. Instead use
the 'count' attrbute, which gives the correct number of elements in the array.
<rdar://problem/12566646>
llvm-svn: 167806
This fixes another infinite recursion case when using target costs.
We can only replace insert element input chains that are pure (end
with inserting into an undef).
llvm-svn: 167784
The old checking code, which assumed that input shuffles and insert-elements
could always be folded (and thus were free) is too simple.
This can only happen in special circumstances.
Using the simple check caused infinite recursion.
llvm-svn: 167750
The pass would previously assert when trying to compute the cost of
compare instructions with illegal vector types (like struct pointers).
llvm-svn: 167743
The assertion is trigged when the Reassociater tries to transform expression
... + 2 * n * 3 + 2 * m + ...
into:
... + 2 * (n*3 + m).
In the process of the transformation, a helper routine folds the constant 2*3 into 6,
confusing optimizer which is trying the to eliminate the common factor 2, and cannot
find 2 any more.
Review is pending. But I'd like commit first in order to help those who are waiting
for this fix.
llvm-svn: 167740
This adds support for weak DAG edges to the general scheduling
infrastructure in preparation for MachineScheduler support for
heuristics based on weak edges.
llvm-svn: 167738
This fixes a bug where shuffles were being fused such that the
resulting input types were not legal on the target. This would
occur only when both inputs and dependencies were also foldable
operations (such as other shuffles) and there were other connected
pairs in the same block.
llvm-svn: 167731
The library call simplifier folds memcmp calls with all constant arguments
to a constant. For example:
memcmp("foo", "foo", 3) -> 0
memcmp("hel", "foo", 3) -> 1
memcmp("foo", "hel", 3) -> -1
The folding is implemented in terms of the system memcmp that LLVM gets
linked with. It currently just blindly uses the value returned from
the system memcmp as the folded constant.
This patch normalizes the values returned from the system memcmp to
(-1, 0, 1) so that we get consistent results across multiple platforms.
The test cases were adjusted accordingly.
llvm-svn: 167726
Each SM and PTX version is modeled as a subtarget feature/CPU. Additionally,
PTX 3.1 is added as the default PTX version to be out-of-the-box compatible
with CUDA 5.0.
Available CPUs for this target:
sm_10 - Select the sm_10 processor.
sm_11 - Select the sm_11 processor.
sm_12 - Select the sm_12 processor.
sm_13 - Select the sm_13 processor.
sm_20 - Select the sm_20 processor.
sm_21 - Select the sm_21 processor.
sm_30 - Select the sm_30 processor.
sm_35 - Select the sm_35 processor.
Available features for this target:
ptx30 - Use PTX version 3.0.
ptx31 - Use PTX version 3.1.
sm_10 - Target SM 1.0.
sm_11 - Target SM 1.1.
sm_12 - Target SM 1.2.
sm_13 - Target SM 1.3.
sm_20 - Target SM 2.0.
sm_21 - Target SM 2.1.
sm_30 - Target SM 3.0.
sm_35 - Target SM 3.5.
llvm-svn: 167699
Transforms/InstCombine/memcmp-1.ll has a test case that looks like:
@foo = constant [4 x i8] c"foo\00"
@hel = constant [4 x i8] c"hel\00"
...
%mem1 = getelementptr [4 x i8]* @hel, i32 0, i32 0
%mem2 = getelementptr [4 x i8]* @foo, i32 0, i32 0
%ret = call i32 @memcmp(i8* %mem1, i8* %mem2, i32 3)
ret i32 %ret
; CHECK: ret i32 2
The folded return value (2 above) is computed using the system memcmp
that the compiler is linked with. This can return different values on
different systems. The test was originally written on an OS X 10.7.5
x86-64 box and passed. However, it failed on one of the x86-64 FreeBSD
buildbots because the system memcpy on that machine returned a different
value (1 instead of 2).
I fixed the test by checking the folding constants with regexes.
llvm-svn: 167691