This is useful when an upper limit on the cache size needs to be
controlled independently of the amount of the amount of free space.
One use case is a machine with a large number of cache directories
(e.g. a buildbot slave hosting a large number of independent build
jobs). By imposing an upper size limit on each cache directory,
users can more easily estimate the server's capacity.
Differential Revision: https://reviews.llvm.org/D34547
llvm-svn: 306126
Summary:
The function matches the interface of llvm::to_integer, but as we are
calling out to a C library function, I let it take a Twine argument, so
we can avoid a string copy at least in some cases.
I add a test and replace a couple of existing uses of strtod with this
function.
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34518
llvm-svn: 306096
move the ObjectCache from the IRCompileLayer to SimpleCompiler.
This is the first in a series of patches aimed at cleaning up and improving the
robustness and performance of the ORC APIs.
llvm-svn: 306058
There doesn't seem to be a compelling reason why this method should be const
other than it was possible with the DIA implementation. The native session
is going to act as a symbol factory and cache. This could be acheived with
mutable (and the existing const_cast), but it seems cleaner to accept that
this method affects the state of the session.
This change eliminates an existing const_cast.
llvm-svn: 306041
The fix in r306003 uncovered a pretty fundamental problem that libc++
implementation of std::result_of does not handle the prototype of
open(2) correctly (presumably because it contains ...). This makes the
whole function unusable in its current form, so I am also reverting the
original commit (r305892), which introduced the function, at least until
I figure out a way to solve the libc++ issue.
llvm-svn: 306005
The default value of the ResultT template argument (which was there only
to avoid spelling out the long std::result_of template multiple times)
was being overriden by function call template argument deduction. This
manifested itself as a compiler error when calling the function as
FILE *X = RetryAfterSignal(nullptr, fopen, ...)
because the function would try to assign the result of fopen to
nullptr_t, but a more insidious side effect was that
RetryAfterSignal(-1, read, ...) would return "int" instead of "ssize_t",
losing precision along the way.
I fix this by having the function take the argument in a way that
prevents argument deduction from kicking in and add a test that makes
sure the return type is correct.
llvm-svn: 306003
Summary:
The main complexity in adding symbol records is that we need to
"relocate" all the type indices. Type indices do not have anything like
relocations, an opaque data structure describing where to find existing
type indices for fixups. The linker just has to "know" where the type
references are in the symbol records. I added an overload of
`discoverTypeIndices` that works on symbol records, and it seems to be
able to link the standard library.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34432
llvm-svn: 305933
Summary:
This function retries an operation if it was interrupted by a signal
(failed with EINTR). It's inspired by the TEMP_FAILURE_RETRY macro in
glibc, but I've turned that into a template function. I've also added a
fail-value argument, to enable the function to be used with e.g.
fopen(3), which is documented to fail for any reason that open(2) can
fail (which includes EINTR).
The main user of this function will be lldb, but there were also a
couple of uses within llvm that I could simplify using this function.
Reviewers: zturner, silvas, joerg
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D33895
llvm-svn: 305892
This is a workaround for large file writes. It has been witnessed that
write(2) failing with EINVAL (22) due to a large value (>2G). Thanks to
James Knight for the help with coming up with a sane test case.
llvm-svn: 305846
This is patch for GSoC project, bash-completion for clang.
To use this on bash, please run `source clang/utils/bash-autocomplete.sh`.
bash-autocomplete.sh is code for bash-completion.
In this patch, Options.td was mainly changed in order to add value class
in Options.inc.
llvm-svn: 305805
With PR33517, it became apparent that symbol table creation can fail
when presented with malformed inputs. This patch makes that sort of
error detectable, so llvm-cov etc. can fail more gracefully.
Specifically, we now check that function records loaded from corrupted coverage
mapping data are rejected, e.g when the recorded function name is garbage.
Testing: check-{llvm,clang,profile}, some unit test updates.
llvm-svn: 305767
With PR33517, it became apparent that symbol table creation can fail
when presented with malformed inputs. This patch makes that sort of
error detectable, so llvm-cov etc. can fail more gracefully.
Specifically, we now check that function names within the symbol table
aren't empty.
Testing: check-{llvm,clang,profile}, some unit test updates.
llvm-svn: 305765
Suppose we had a type index offsets array with a boundary at type index
N. Then you request the name of the type with index N+1, and that name
requires the name of index N-1 (think a parameter list, for example). We
didn't handle this, and we would print something like (<unknown UDT>,
<unknown UDT>).
The fix for this is not entirely trivial, and speaks to a larger
problem. I think we need to kill TypeDatabase, or at the very least kill
TypeDatabaseVisitor. We need a thing that doesn't do any caching
whatsoever, just given a type index it can compute the type name "the
slow way". The reason for the bug is that we don't have anything like
that. Everything goes through the type database, and if we've visited a
record, then we're "done". It doesn't know how to do the expensive thing
of re-visiting dependent records if they've not yet been visited.
What I've done here is more or less copied the code (albeit greatly
simplified) from TypeDatabaseVisitor, but wrapped it in an interface
that just returns a std::string. The logic of caching the name is now in
LazyRandomTypeCollection. Eventually I'd like to move the record
database here as well and the visited record bitfield here as well, at
which point we can actually just delete TypeDatabase. I don't see any
reason for it if a "sequential" collection is just a special case of a
random access collection with an empty partial offsets array.
Differential Revision: https://reviews.llvm.org/D34297
llvm-svn: 305612
Previously if you used fmt_align(7, Center) you would get the
output ' 7 '. It may be desirable for the user to specify
the fill character though, for example producing '---7---'. This
patch adds that.
llvm-svn: 305449
Instead use target_link_libraries directly. Thanks to
Juergen Ributzka for the suggestion, which fixes an issue
when llvm is configured with no targets.
llvm-svn: 305421
Many times unit tests for different libraries would like to use
the same helper functions for checking common types of errors.
This patch adds a common library with helpers for testing things
in Support, and introduces helpers in here for integrating the
llvm::Error and llvm::Expected<T> classes with gtest and gmock.
Normally, we would just be able to write:
EXPECT_THAT(someFunction(), succeeded());
but due to some quirks in llvm::Error's move semantics, gmock
doesn't make this easy, so two macros EXPECT_THAT_ERROR() and
EXPECT_THAT_EXPECTED() are introduced to gloss over the difficulties.
Consider this an exception, and possibly only temporary as we
look for ways to improve this.
Differential Revision: https://reviews.llvm.org/D33059
llvm-svn: 305395
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
llvm-svn: 305386
Previously, the matching was done incorrectly for the case where
operands for FCmpInst and SelectInst were in opposite order.
Patch by Andrei Elovikov.
Differential Revision: https://reviews.llvm.org/D33185
llvm-svn: 305308
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: pcc, echristo, aprantl
Reviewed By: aprantl
Subscribers: fhahn, aprantl, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33892
llvm-svn: 305304
Summary: Fixes an issue using RegisterStandardPasses from a statically linked object before PassManagerBuilder::addGlobalExtension is called from a dynamic library.
Reviewers: efriedma, theraven
Reviewed By: efriedma
Subscribers: mehdi_amini, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D33515
llvm-svn: 305303
Running unittests/Support/DynamicLibrary/DynamicLibraryTests fails
when LLVM is configured with -DLLVM_EXPORT_SYMBOLS_FOR_PLUGINS=ON, because
the test's version script only contains symbols extracted from the static libraries,
that the test links with, but not those from the main object/executable itself.
The patch moves the one symbol, needed by the test, to a static library.
Fixes https://bugs.llvm.org/show_bug.cgi?id=32893
Patch by Momchil Velikov.
Differential Revision: https://reviews.llvm.org/D33789
llvm-svn: 305181
They're unused with recent versions of libstdc++ but older ones
(e.g. libstdc++ 4.9 still requires them). Maybe we should bump
the requirements on the minimum version to make GCC 7 happy, but
in the meanwhile we need to live with the warning.
llvm-svn: 305158
Summary:
This prevents the iterator overrides from being selected in
the case where non-iterator types are used as arguments, which
is of particular importance in cases where other overrides with
identical types exist.
Reviewers: dblaikie, bkramer, rafael
Subscribers: llvm-commits, efriedma
Differential Revision: https://reviews.llvm.org/D33919
llvm-svn: 305105
Previously extractors tried to be stateless with any additional
context information needed in order to parse items being passed
in via the extraction method. This led to quite cumbersome
implementation challenges and awkwardness of use. This patch
brings back support for stateful extractors, making the
implementation and usage simpler.
llvm-svn: 305093
Summary:
Check that the first access before one being tested is valid.
Before this patch, if there was no definition prior to the Use being tested,
the first time Iter was deferenced, it hit the sentinel.
Reviewers: dberlin, gbiv
Subscribers: sanjoy, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D33950
llvm-svn: 304926
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
Seems like at least one reasonable interpretation of optnone is that the
optimizer never "looks inside" a function. This fix is consistent with
that interpretation.
Specifically this came up in the situation:
f3 calls f2 calls f1
f2 is always_inline
f1 is optnone
The application of readnone to f1 (& thus to f2) caused the inliner to
kill the call to f2 as being trivially dead (without even checking the
cost function, as it happens - not sure if that's also a bug).
llvm-svn: 304833
Use `if (!X) report_fatal_error()` instead of `assert()` for the ad-hoc
error handling in two unittests. This reduces unnecessary differences
between release and debug builds (motivated by unused variable warnings
triggered in release builds).
llvm-svn: 304814
clang-format (https://reviews.llvm.org/D33932) to keep primary headers
at the top and handle new utility headers like 'gmock' consistently with
other utility headers.
No other change was made. I did no manual edits, all of this is
clang-format.
This should allow other changes to have more clear and focused diffs,
and is especially motivated by moving some headers into more focused
libraries.
llvm-svn: 304786
Summary:
This problem stems from the fact that instructions are allocated using new
in LLVM, i.e. there is no relationship that can be derived by just looking
at the pointer value.
This interface dispatches to appropriate dominance check given 2 instructions,
i.e. in case the instructions are in the same basic block, ordered basicblock
(with instruction numbering and caching) are used. Otherwise, dominator tree
is used.
This is a preparation patch for https://reviews.llvm.org/D32720
Reviewers: dberlin, hfinkel, davide
Subscribers: davide, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D33380
llvm-svn: 304764
When parsing .mir files immediately construct the MachineFunctions and
put them into MachineModuleInfo.
This allows us to get rid of the delayed construction (and delayed error
reporting) through the MachineFunctionInitialzier interface.
Differential Revision: https://reviews.llvm.org/D33809
llvm-svn: 304758
This removes a quadratic behavior in assert-enabled builds.
GVN propagates the equivalence from a condition into the blocks guarded by the
condition. E.g. for 'if (a == 7) { ... }', 'a' will be replaced in the block
with 7. It does this by replacing all the uses of 'a' that are dominated by
the true edge.
For a switch with N cases and U uses of the value, this will mean N * U calls
to 'dominates'. Asserting isSingleEdge in 'dominates' make this N^2 * U
because this function checks for the uniqueness of the edge. I.e. traverses
each edge between the SwitchInst's block and the cases.
The change removes the assert and makes 'dominates' works correctly in the
presence of non-unique edges.
This brings build time down by an order of magnitude for an input that has
~10k cases in a switch statement.
Differential Revision: https://reviews.llvm.org/D33584
llvm-svn: 304721
Previously MappedBlockStream owned its own BumpPtrAllocator that
it would allocate from when a read crossed a block boundary. This
way it could still return the user a contiguous buffer of the
requested size. However, It's not uncommon to open a stream, read
some stuff, close it, and then save the information for later.
After all, since the entire file is mapped into memory, the data
should always be available as long as the file is open.
Of course, the exception to this is when the data isn't *in* the
file, but rather in some buffer that we temporarily allocated to
present this contiguous view. And this buffer would get destroyed
as soon as the strema was closed.
The fix here is to force the user to specify the allocator, this
way it can provide an allocator that has whatever lifetime it
chooses.
Differential Revision: https://reviews.llvm.org/D33858
llvm-svn: 304623
This might give a few better opportunities to optimize these to memcpy
rather than loops - also a few minor cleanups (StringRef-izing,
templating (to avoid std::function indirection), etc).
The SmallVector::assign(iter, iter) could be improved with the use of
SFINAE, but the (iter, iter) ctor and append(iter, iter) need it to and
don't have it - so, workaround it for now rather than bothering with the
added complexity.
(also, as noted in the added FIXME, these assign ops could potentially
be optimized better at least for non-trivially-copyable types)
llvm-svn: 304566
This was rL304226, reverted in 304228 due to a clang assertion failure
on the build bots. That problem should have been addressed by clang
commit rL304470.
llvm-svn: 304488
The intent of the test is to check that array lengths greater than
UINT_MAX work properly. Change the test to stress that scenario, without
triggering pointer overflow UB.
Caught by a WIP pointer overflow checker in clang.
Differential Revision: https://reviews.llvm.org/D33149
llvm-svn: 304353
Summary:
In rL302576, DISubprograms gained the constraint that a !dbg attachments to functions must
have a 1:1 mapping to DISubprograms. As part of that change, the function cloning support
was adjusted to attempt to enforce this invariant during cloning. However, there
were several problems with the implementation. Part of these were fixed in rL304079.
However, there was a more fundamental problem with these changes, namely that it
bypasses the matadata value map, causing the cloned metadata to be a mix of metadata
pointing to the new suprogram (where manual code was added to fix those up) and the
old suprogram (where this was not the case). This mismatch could cause a number of
different assertion failures in the DWARF emitter. Some of these are given at
https://github.com/JuliaLang/julia/issues/22069, but some others have been observed
as well. Attempt to rectify this by partially reverting the manual DI metadata fixup,
and instead using the standard value map approach. To retain the desired semantics
of not duplicating the compilation unit and inlined subprograms, explicitly freeze
these in the value map.
Reviewers: dblaikie, aprantl, GorNishanov, echristo
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33655
llvm-svn: 304226
This is super awkward, but GCC doesn't let us have template visible when
an argument is an inline function and -fvisibility-inlines-hidden is
used.
llvm-svn: 304175
error C2971: 'llvm::ManagedStatic': template parameter 'Creator': 'CreateDefaultTimerGroup': a variable with non-static storage duration cannot be used as a non-type argument
llvm-svn: 304157
With fix of uninitialized variable.
Original commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 304078
I've taken the approach from the LoopInfo test:
* Rather than running in the pass manager just build the analyses manually
* Split out the common parts (makeLLVMModule, runWithDomTree) into helpers
Differential Revision: https://reviews.llvm.org/D33617
llvm-svn: 304061
Summary:
This fixes introduction of an incorrect inttoptr/ptrtoint pair in
the included test case which makes use of non-integral pointers. I
suspect there are more cases like this left, but this takes care of
the one I was seeing at the moment.
Reviewers: sanjoy
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D33129
llvm-svn: 304058
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 304002
With fix of test compilation.
Initial commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section
which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses
with use of llvm::LoadedObjectInfo interface. We assigned file offsets as addressed.
Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason
of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well.
That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 303983
Running unittests/Support/DynamicLibrary/DynamicLibraryTests fails when LLVM is
configured with LLVM_EXPORT_SYMBOLS_FOR_PLUGINS=ON, because the test's version
script only contains symbols extracted from the static libraries, that the test
links with, but not those from the main object/executable itself. The patch
explicitly exports the one symbol needed by the test.
This change fixes https://bugs.llvm.org/show_bug.cgi?id=32893
Patch authored by Momchil Velikov.
Differential Revision: https://reviews.llvm.org/D33490
llvm-svn: 303979
block.
This allows writing much more natural and readable range based for loops
directly over the PHI nodes. It also takes advantage of the same tricks
for terminating the sequence as the hand coded versions.
I've replaced one example of this mostly to showcase the difference and
I've added a unit test to make sure the facilities really work the way
they're intended. I want to use this inside of SimpleLoopUnswitch but it
seems generally nice.
Differential Revision: https://reviews.llvm.org/D33533
llvm-svn: 303964
Merging two type streams is one of the most time consuming
parts of generating a PDB, and as such it needs to be as
fast as possible. The visitor abstractions used for interoperating
nicely with many different types of inputs and outputs have
been used widely and help greatly for testability and implementing
tools, but the abstractions build up and get in the way of
performance.
This patch removes all of the visitation stuff from the type
stream merger, essentially re-inventing the leaf / member switch
and loop, but at a very low level. This allows us many other
optimizations, such as not actually deserializing *any* records
(even member records which don't describe their own length), as
the operation of "figure out how long this record is" is somewhat
faster than "figure out how long this record *and* get all its
fields out". Furthermore, whereas before we had to deserialize,
re-write type indices, then re-serialize, now we don't have to
do any of those 3 steps. We just find out where the type indices
are and pull them directly out of the byte stream and re-write
them.
This is worth a 50-60% performance increase. On top of all other
optimizations that have been applied this week, I now get the
following numbers when linking lld.exe and lld.pdb
MSVC: 25.67s
Before This Patch: 18.59s
After This Patch: 8.92s
So this is a huge performance win.
Differential Revision: https://reviews.llvm.org/D33564
llvm-svn: 303935
It was using the number of blocks of the entire PDB file as the number
of blocks of each stream that was created. This was only an issue in
the readLongestContiguousChunk function, which was never called prior.
This bug surfaced when I updated an algorithm to use this function and
the algorithm broke.
llvm-svn: 303916
Summary: This allows pthread_self to be pulled out of a loop by LICM.
Reviewers: hfinkel, arsenm, davide
Reviewed By: davide
Subscribers: davide, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D32782
llvm-svn: 303495
getParamAlignment expects an argument number, not an AttributeList
index.
Johan Englan, who works on LDC, found this bug and told me about it off
list.
llvm-svn: 303458
This was originally reverted because it was a breaking a bunch
of bots and the breakage was not surfacing on Windows. After much
head-scratching this was ultimately traced back to a bug in the
lit test runner related to its pipe handling. Now that the bug
in lit is fixed, Windows correctly reports these test failures,
and as such I have finally (hopefully) fixed all of them in this
patch.
llvm-svn: 303446
Summary:
This patch adds udiv/sdiv/urem/srem/udivrem/sdivrem methods that can divide by a uint64_t. This makes division consistent with all the other arithmetic operations.
This modifies the interface of the divide helper method to work on raw arrays instead of APInts. This way we can pass the uint64_t in for the RHS without wrapping it in an APInt. This required moving all the Quotient and Remainder allocation handling up to the callers. For udiv/urem this was as simple as just creating the Quotient/Remainder with the right size when they were declared. For udivrem we have to rely on reallocate not changing the contents of the variable LHS or RHS is aliased with the Quotient or Remainder APInts. We also have to zero the upper bits of Remainder and Quotient that divide doesn't write to if lhsWords/rhsWords is smaller than the width.
I've update the toString method to use the new udivrem.
Reviewers: hans, dblaikie, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33310
llvm-svn: 303431
Summary:
This causes them to be re-computed more often than necessary but resolves
objections that were raised post-commit on r301750.
Reviewers: qcolombet, ab, t.p.northover, rovka, kristof.beyls
Reviewed By: qcolombet
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32861
llvm-svn: 303418
This is a squash of ~5 reverts of, well, pretty much everything
I did today. Something is seriously broken with lit on Windows
right now, and as a result assertions that fire in tests are
triggering failures. I've been breaking non-Windows bots all
day which has seriously confused me because all my tests have
been passing, and after running lit with -a to view the output
even on successful runs, I find out that the tool is crashing
and yet lit is still reporting it as a success!
At this point I don't even know where to start, so rather than
leave the tree broken for who knows how long, I will get this
back to green, and then once lit is fixed on Windows, hopefully
hopefully fix the remaining set of problems for real.
llvm-svn: 303409
Right now we have multiple notions of things that represent collections of
types. Most commonly used are TypeDatabase, which is supposed to keep
mappings from TypeIndex to type name when reading a type stream, which
happens when reading PDBs. And also TypeTableBuilder, which is used to
build up a collection of types dynamically which we will later serialize
(i.e. when writing PDBs).
But often you just want to do some operation on a collection of types, and
you may want to do the same operation on any kind of collection. For
example, you might want to merge two TypeTableBuilders or you might want
to merge two type streams that you loaded from various files.
This dichotomy between reading and writing is responsible for a lot of the
existing code duplication and overlapping responsibilities in the existing
CodeView library classes. For example, after building up a
TypeTableBuilder with a bunch of type records, if we want to dump it we
have to re-invent a bunch of extra glue because our dumper takes a
TypeDatabase or a CVTypeArray, which are both incompatible with
TypeTableBuilder.
This patch introduces an abstract base class called TypeCollection which
is shared between the various type collection like things. Wherever we
previously stored a TypeDatabase& in some common class, we now store a
TypeCollection&.
The advantage of this is that all the details of how the collection are
implemented, such as lazy deserialization of partial type streams, is
completely transparent and you can just treat any collection of types the
same regardless of where it came from.
Differential Revision: https://reviews.llvm.org/D33293
llvm-svn: 303388
Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362
driver-mode recognition in clang (this is because the sysctl method
always returns one and only one executable path, even for an executable
with multiple links):
Fix DynamicLibraryTest.cpp on FreeBSD and NetBSD
Summary:
After rL301562, on FreeBSD the DynamicLibrary unittests fail, because
the test uses getMainExecutable("DynamicLibraryTests", Ptr), and since
the path does not contain any slashes, retrieving the main executable
will not work.
Reimplement getMainExecutable() for FreeBSD and NetBSD using sysctl(3),
which is more reliable than fiddling with relative or absolute paths.
Also add retrieval of the original argv[] from the GoogleTest framework,
to use as a fallback for other OSes.
Reviewers: emaste, marsupial, hans, krytarowski
Reviewed By: krytarowski
Subscribers: krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D33171
llvm-svn: 303285
We have to check gCrashRecoveryEnabled before using __try.
In other words, SEH works too well and we ended up recovering from
crashes in implicit module builds that we weren't supposed to. Only
libclang is supposed to enable CrashRecoveryContext to allow implicit
module builds to crash.
llvm-svn: 303279
Summary:
It avoids problems when other libraries raise exceptions. In particular,
OutputDebugString raises an exception that the debugger is supposed to
catch and suppress. VEH kicks in first right now, and that is entirely
incorrect.
Unfortunately, GCC does not support SEH, so I've kept the old buggy VEH
codepath around. We could fix it with SetUnhandledExceptionFilter, but
that is not per-thread, so a well-behaved library shouldn't set it.
Reviewers: zturner
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D33261
llvm-svn: 303274
There is often a lot of boilerplate code required to visit a type
record or type stream. The #1 use case is that you have a sequence
of bytes that represent one or more records, and you want to
deserialize each one, switch on it, and call a callback with the
deserialized record that the user can examine. Currently this
requires at least 6 lines of code:
codeview::TypeVisitorCallbackPipeline Pipeline;
Pipeline.addCallbackToPipeline(Deserializer);
Pipeline.addCallbackToPipeline(MyCallbacks);
codeview::CVTypeVisitor Visitor(Pipeline);
consumeError(Visitor.visitTypeRecord(Record));
With this patch, it becomes one line of code:
consumeError(codeview::visitTypeRecord(Record, MyCallbacks));
This is done by having the deserialization happen internally inside
of the visitTypeRecord function. Since this is occasionally not
desirable, the function provides a 3rd parameter that can be used
to change this behavior.
Hopefully this can significantly reduce the barrier to entry
to using the visitation infrastructure.
Differential Revision: https://reviews.llvm.org/D33245
llvm-svn: 303271
A lot of code is duplicated between the first_last and the
next / prev methods. All of this code can be shared if they
are implemented in terms of find_first_in(Begin, End) etc,
in which case find_first = find_first_in(0, Size) and find_next
is find_first_in(Prev+1, Size), with similar reductions for
the other methods.
Differential Revision: https://reviews.llvm.org/D33104
llvm-svn: 303269
The operator-> implementation comes from iterator_facade_base, so it should
just work given that the iterator has a tested operator*. But r302257 showed
that required careful handling of for the const qualifier. This patch ensures
the fix in r302257 doesn't regress.
Differential Revision: https://reviews.llvm.org/D33249
llvm-svn: 303215
ProfileSummaryInfo already checks whether the module has sample profile
in determining profile counts. This will also be useful in inliner to
clean up threshold updates.
llvm-svn: 303204
Summary:
After rL301562, on FreeBSD the DynamicLibrary unittests fail, because
the test uses getMainExecutable("DynamicLibraryTests", Ptr), and since
the path does not contain any slashes, retrieving the main executable
will not work.
Reimplement getMainExecutable() for FreeBSD and NetBSD using sysctl(3),
which is more reliable than fiddling with relative or absolute paths.
Also add retrieval of the original argv[] from the GoogleTest framework,
to use as a fallback for other OSes.
Reviewers: emaste, marsupial, hans, krytarowski
Reviewed By: krytarowski
Subscribers: krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D33171
llvm-svn: 303015
This adds a visitor that is capable of accessing type
records randomly and caching intermediate results that it
learns about during partial linear scans. This yields
amortized O(1) access to a type stream even though type
streams cannot normally be indexed.
Differential Revision: https://reviews.llvm.org/D33009
llvm-svn: 302936
Summary:
Don't use the metadata on call instructions for determining hotness
unless we are in sample PGO mode, where it is needed because profile
counts are not accurate. In instrumentation mode this is not necessary
and does more harm than good when calls have VP metadata that hasn't
been properly scaled after transformations or dropped after constant
prop based devirtualization (both should be fixed, but we don't need
to do this in the first place for instrumentation PGO).
This required adjusting a number of tests to distinguish between sample
and instrumentation PGO handling, and to add in profile summary metadata
so that getProfileCount can get the summary.
Reviewers: davidxl, danielcdh
Subscribers: aemerson, rengolin, mehdi_amini, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D32877
llvm-svn: 302844
r271020 added an early out to skip the signed multiply portion of ConstantRange::multiply. The comment says we don't need to do signed multiply if the range is only positive numbers, but the implemented check only ensures that the start of the range is positive. It doesn't look at the end of the range.
This patch checks the end of the range instead. Because Upper is one more than the end we have to see if its positive or if its one past the last positive number.
llvm-svn: 302717
frames.
RuntimeDyld was previously responsible for tracking allocated EH frames, but it
makes more sense to have the RuntimeDyld::MemoryManager track them (since the
frames are allocated through the memory manager, and written to memory owned by
the memory manager). This patch moves the frame tracking into
RTDyldMemoryManager, and changes the deregisterFrames method on
RuntimeDyld::MemoryManager from:
void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size);
to:
void deregisterEHFrames();
Separating this responsibility will allow ORC to continue to throw the
RuntimeDyld instances away post-link (saving a few dozen bytes per lazy
function) while properly deregistering frames when modules are unloaded.
This patch also updates ORC to call deregisterEHFrames when modules are
unloaded. This fixes a bug where an exception that tears down the JIT can then
unwind through dangling EH frames that have been deallocated but not
deregistered, resulting in UB.
For people using SectionMemoryManager this should be pretty much a no-op. For
people with custom allocators that override registerEHFrames/deregisterEHFrames,
you will now be responsible for tracking allocated EH frames.
Reviewed in https://reviews.llvm.org/D32829
llvm-svn: 302589
As recently discussed on llvm-dev [1], this patch makes it illegal for
two Functions to point to the same DISubprogram and updates
FunctionCloner to also clone the debug info of a function to conform
to the new requirement. To simplify the implementation it also factors
out the creation of inlineAt locations from the Inliner into a
general-purpose utility in DILocation.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
<rdar://problem/31926379>
Differential Revision: https://reviews.llvm.org/D32975
This reapplies r302469 with a fix for a bot failure (reparentDebugInfo
now checks for the case the orig and new function are identical).
llvm-svn: 302576
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential Revision: https://reviews.llvm.org/D32541
llvm-svn: 302571
This caused PR32977.
Original commit message:
> Make it illegal for two Functions to point to the same DISubprogram
>
> As recently discussed on llvm-dev [1], this patch makes it illegal for
> two Functions to point to the same DISubprogram and updates
> FunctionCloner to also clone the debug info of a function to conform
> to the new requirement. To simplify the implementation it also factors
> out the creation of inlineAt locations from the Inliner into a
> general-purpose utility in DILocation.
>
> [1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
> <rdar://problem/31926379>
>
> Differential Revision: https://reviews.llvm.org/D32975
llvm-svn: 302533
As recently discussed on llvm-dev [1], this patch makes it illegal for
two Functions to point to the same DISubprogram and updates
FunctionCloner to also clone the debug info of a function to conform
to the new requirement. To simplify the implementation it also factors
out the creation of inlineAt locations from the Inliner into a
general-purpose utility in DILocation.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
<rdar://problem/31926379>
Differential Revision: https://reviews.llvm.org/D32975
llvm-svn: 302469
Summary:
Following up on Sanjay's suggetion in D32955, move this functionality
into ShuffleVectornstruction.
Reviewers: spatel, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32956
llvm-svn: 302420
wcslen is part of the C99 and C++98 standards.
- This introduces the function to TargetLibraryInfo.
- Also set attributes for wcslen in llvm::inferLibFuncAttributes().
Differential Revision: https://reviews.llvm.org/D32837
llvm-svn: 302278
This almost completes the matrix of all possible find
functions.
*EXISTING*
----------
find_first
find_first_unset
find_next
find_next_unset
find_last
find_last_unset
*NEW*
----
find_prev
*STILL MISSING*
---------------
find_prev_unset
Differential Revision: https://reviews.llvm.org/D32885
llvm-svn: 302254
Otherwise, each CPU has to manually specify the extensions it supports,
even though they have to be a superset of the base arch extensions.
And when there's redundant data there's stale data, so most of the CPUs
lie about the features they support (almost none lists AEK_FP).
Instead, do the saner thing: add the optional extensions on top of the
base extensions provided by the architecture.
The ARM TargetParser has the same behavior.
Differential Revision: https://reviews.llvm.org/D32780
llvm-svn: 302078
Summary:
Do three things to help with that:
- Add AttributeList::FirstArgIndex, which is an enumerator currently set
to 1. It allows us to change the indexing scheme with fewer changes.
- Add addParamAttr/removeParamAttr. This just shortens addAttribute call
sites that would otherwise need to spell out FirstArgIndex.
- Remove some attribute-specific getters and setters from Function that
take attribute list indices. Most of these were only used from
BuildLibCalls, and doesNotAlias was only used to test or set if the
return value is malloc-like.
I'm happy to split the patch, but I think they are probably easier to
review when taken together.
This patch should be NFC, but it sets the stage to change the indexing
scheme to this, which is more convenient when indexing into an array:
0: func attrs
1: retattrs
2...: arg attrs
Reviewers: chandlerc, pete, javed.absar
Subscribers: david2050, llvm-commits
Differential Revision: https://reviews.llvm.org/D32811
llvm-svn: 302060
llvm-readobj hand rolls some CodeView parsing code for string
tables, so this patch updates it to re-use some of the newly
introduced parsing code in LLVMDebugInfoCodeView.
Differential Revision: https://reviews.llvm.org/D32772
llvm-svn: 302052
This was reverted due to a "missing" file, but in reality
what happened was that I renamed a file, and then due to
a merge conflict both the old file and the new file got
added to the repository. This led to an unused cpp file
being in the repo and not referenced by any CMakeLists.txt
but #including a .h file that wasn't in the repo. In an
even more unfortunate coincidence, CMake didn't report the
unused cpp file because it was in a subdirectory of the
folder with the CMakeLists.txt, and not in the same directory
as any CMakeLists.txt.
The presence of the unused file was then breaking certain
tools that determine file lists by globbing rather than
by what's specified in CMakeLists.txt
In any case, the fix is to just remove the unused file from
the patch set.
llvm-svn: 302042
Check to make sure no compile units have the same DW_AT_stmt_list values. Report a verification error if they do.
Differential Revision: https://reviews.llvm.org/D32771
llvm-svn: 302039
The patch is failing to add StringTableStreamBuilder.h, but that isn't
even discovered because the corresponding StringTableStreamBuilder.cpp
isn't added to any CMakeLists.txt file and thus never built. I think
this patch is just incomplete.
llvm-svn: 302002
This was reported by the ASAN bot, and it turned out to be
a fairly fundamental problem with the design of VarStreamArray
and the way it passes context information to the extractor.
The fix was cumbersome, and I'm not entirely pleased with it,
so I plan to revisit this design in the future when I'm not
pressed to get the bots green again. For now, this fixes
the issue by storing the context information by value instead
of by reference, and introduces some impossibly-confusing
template magic to make things "work".
llvm-svn: 301999
Previously we had knowledge of how to serialize and deserialize
a string table inside of DebugInfo/PDB, but the string table
that it serializes contains a piece that is actually considered
CodeView and can appear outside of a PDB. We already have logic
in llvm-readobj and MCCodeView to read and write this format,
so it doesn't make sense to duplicate the logic in DebugInfoPDB
as well.
This patch makes codeview::StringTable (for writing) and
codeview::StringTableRef (for reading), updates DebugInfoPDB
to use these classes for its own writing, and updates llvm-readobj
to additionally use StringTableRef for reading.
It's a bit more difficult to get MCCodeView to use this for
writing, but it's a logical next step.
llvm-svn: 301986
This patch verifies the .debug_line:
- verify all addresses in a line table sequence have ascending addresses
- verify that all line table file indexes are valid
Unit tests added for both cases.
Differential Revision: https://reviews.llvm.org/D32765
llvm-svn: 301984
LTO and other fancy linking previously led to DWARF that contained invalid references. We already validate that CU relative references fall into the CU, and the DW_FORM_ref_addr references fall inside the .debug_info section, but we didn't validate that the references pointed to correct DIE offsets. This new verification will ensure that all references refer to actual DIEs and not an offset in between.
This caught a bug in DWARFUnit::getDIEForOffset() where if you gave it any offset, it would match the DIE that mathes the offset _or_ the next DIE. This has been fixed.
Differential Revision: https://reviews.llvm.org/D32722
llvm-svn: 301971
With the forthcoming codeview::StringTable which a pdb::StringTable
would hold an instance of as one member, this ambiguity becomes
confusing. Rename to PDBStringTable to avoid this.
llvm-svn: 301948