A backedge-taken count doesn't refer to memory; returning a pointer type
is nonsense. So make sure we always return an integer.
The obvious way to do this would be to just convert the operands of the
icmp to integers, but that doesn't quite work out at the moment:
isLoopEntryGuardedByCond currently gets confused by ptrtoint operations.
So we perform the ptrtoint conversion late for lt/gt operations.
The test changes are mostly innocuous. The most interesting changes are
more complex SCEV expressions of the form "(-1 * (ptrtoint i8* %ptr to
i64)) + %ptr)". This is expected: we can't fold this to zero because we
need to preserve the pointer base.
The call to isLoopEntryGuardedByCond in howFarToZero is less precise
because of ptrtoint operations; this shows up in the function
pr46786_c26_char in ptrtoint.ll. Fixing it here would require more
complex refactoring. It should eventually be fixed by future
improvements to isImpliedCond.
See https://bugs.llvm.org/show_bug.cgi?id=46786 for context.
Differential Revision: https://reviews.llvm.org/D103656
Nowadays LLVM does not assume that all loops are finite,
so if we want to produce a finite loop from a potentially-infinite one,
we must ensure that the original loop is known to be a finite one.
For this transform, it only matters for arithmetic right-shifts.
For them, either the function or the loop must be known to
be `mustprogress`, or the original value being shifted must be known
to be non-negative (because iff the sign bit was set,
it will never become zero, but will become `-1` in the "end").
It would be really good for alive2 to actually complain about this,
but it currently does not: https://github.com/AliveToolkit/alive2/issues/726
This adds support for the "count active bits" pattern, i.e.:
```
int countBits(unsigned val) {
int cnt = 0;
for( ; (val << cnt) != 0; ++cnt)
;
return cnt;
}
```
but a somewhat more general one:
```
int countBits(unsigned val, int start, int off) {
int cnt;
for (cnt = start; val << (cnt + off); cnt++)
;
return cnt;
}
```
alive2 is happy with all the tests there.
Note that, again, much like with the right-shift cases,
we don't require the `val != 0` guard.
This is the last pattern that was supported by
`detectShiftUntilZeroIdiom()`, which now becomes obsolete.
This adds support for the "count active bits" pattern, i.e.:
```
int countActiveBits(signed val) {
int cnt = 0;
for( ; (val >> cnt) != 0; ++cnt)
;
return cnt;
}
```
but a somewhat more general one:
```
int countActiveBits(signed val, int start, int off) {
int cnt;
for (cnt = start; val >> (cnt + off); cnt++)
;
return cnt;
}
```
This directly matches the existing 'logical right-shift until zero' idiom.
alive2 is happy with all the tests there.
Note that, again, much like with the original unsigned case,
we don't require the `val != 0` guard.
The old `detectShiftUntilZeroIdiom()` already supports this pattern,
the idea here is that the `val` must be positive (have at least one
leading zero), because otherwise the loop is non-terminating,
but since it is not `while(1)`, that would have been UB.
I think i've added exhaustive test coverage, and i have verified that alive2 is happy with all the tests,
so in principle i'm fine with landing this without review, but just in case..
This adds support for the "count active bits" pattern, i.e.:
```
int countActiveBits(unsigned val) {
int cnt = 0;
for( ; (val >> cnt) != 0; ++cnt)
;
return cnt;
}
```
but a somewhat more general one, since that is what i need:
```
int countActiveBits(unsigned val, int start, int off) {
int cnt;
for (cnt = start; val >> (cnt + off); cnt++)
;
return cnt;
}
```
I've followed in footstep of 'left-shift until bittest' idiom (D91038),
in the sense that iff the `ctlz` intrinsic is cheap, we'll transform,
regardless of all other factors.
This can have a shocking effect on certain benchmarks:
```
raw.pixls.us-unique/Olympus/XZ-1$ /repositories/googlebenchmark/tools/compare.py -a benchmarks ~/rawspeed/build-{old,new}/src/utilities/rsbench/rsbench --benchmark_counters_tabular=true --benchmark_min_time=0.00000001 --benchmark_repetitions=128 p1319978.orf
RUNNING: /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench --benchmark_counters_tabular=true --benchmark_min_time=0.00000001 --benchmark_repetitions=128 p1319978.orf --benchmark_display_aggregates_only=true --benchmark_out=/tmp/tmp49_28zcm
2021-05-09T01:06:05+03:00
Running /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench
Run on (32 X 3600.24 MHz CPU s)
CPU Caches:
L1 Data 32 KiB (x16)
L1 Instruction 32 KiB (x16)
L2 Unified 512 KiB (x16)
L3 Unified 32768 KiB (x2)
Load Average: 5.26, 6.29, 3.49
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations CPUTime,s CPUTime/WallTime Pixels Pixels/CPUTime Pixels/WallTime Raws/CPUTime Raws/WallTime WallTime,s
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
p1319978.orf/threads:32/process_time/real_time_mean 145 ms 145 ms 128 0.145319 0.999981 10.1568M 69.8949M 69.8936M 6.88159 6.88146 0.145322
p1319978.orf/threads:32/process_time/real_time_median 145 ms 145 ms 128 0.145317 0.999986 10.1568M 69.8941M 69.8931M 6.88151 6.88141 0.145319
p1319978.orf/threads:32/process_time/real_time_stddev 0.766 ms 0.766 ms 128 766.586u 15.1302u 0 354.167k 354.098k 0.0348699 0.0348631 766.469u
RUNNING: /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench --benchmark_counters_tabular=true --benchmark_min_time=0.00000001 --benchmark_repetitions=128 p1319978.orf --benchmark_display_aggregates_only=true --benchmark_out=/tmp/tmpwb9sw2x0
2021-05-09T01:06:24+03:00
Running /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench
Run on (32 X 3599.95 MHz CPU s)
CPU Caches:
L1 Data 32 KiB (x16)
L1 Instruction 32 KiB (x16)
L2 Unified 512 KiB (x16)
L3 Unified 32768 KiB (x2)
Load Average: 4.05, 5.95, 3.43
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations CPUTime,s CPUTime/WallTime Pixels Pixels/CPUTime Pixels/WallTime Raws/CPUTime Raws/WallTime WallTime,s
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
p1319978.orf/threads:32/process_time/real_time_mean 99.8 ms 99.8 ms 128 0.0997758 0.999972 10.1568M 101.797M 101.794M 10.0225 10.0222 0.0997786
p1319978.orf/threads:32/process_time/real_time_median 99.7 ms 99.7 ms 128 0.0997165 0.999985 10.1568M 101.857M 101.854M 10.0284 10.0281 0.0997195
p1319978.orf/threads:32/process_time/real_time_stddev 0.224 ms 0.224 ms 128 224.166u 34.345u 0 226.81k 227.231k 0.0223309 0.0223723 224.586u
Comparing /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench to /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench
Benchmark Time CPU Time Old Time New CPU Old CPU New
----------------------------------------------------------------------------------------------------------------------------------------------------
p1319978.orf/threads:32/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 128 vs 128
p1319978.orf/threads:32/process_time/real_time_mean -0.3134 -0.3134 145 100 145 100
p1319978.orf/threads:32/process_time/real_time_median -0.3138 -0.3138 145 100 145 100
p1319978.orf/threads:32/process_time/real_time_stddev -0.7073 -0.7078 1 0 1 0
```
Reviewed By: craig.topper, zhuhan0
Differential Revision: https://reviews.llvm.org/D102116
After D98856 these tests will by default break (fatal_error) if any of
the wrong interfaces are used, so there's no longer a need to have a
RUN line that checks for a warning message emitted by the compiler.
This will tell loop idiom recognize that it can make popcount loops countable
using the ctpop intrinsic. I didn't bother checking for illegal types.
Type legalization knows how to split a ctpop into multiple ctops added together.
Assuming we only receive reasonable integer bit widths, a few cpop instructions
added together is probably better than the loop.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D99203
While `%x.curr` is always safe to compute, because `LoopBackedgeTakenCount`
will always be smaller than `bitwidth(X)`, i.e. we never get poison,
rewriting `%x.next` is more complicated, however, because `X << LoopTripCount`
will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`).
So unless we know that isn't the case (as alive2 notes, we know it's safe
to do iff shift had no-wrap flags, or bitpos does not indicate signbit,
or we know that %x is never `1`), we'll need to emit an alternative,
safe IR, by either just shifting the `%x.curr`, or conditionally selecting
between the computed `%x.next` and `0`..
Former IR looks better so let's do that.
While there, ensure that we don't drop no-wrap flags from said shift.
In particular, add tests with no-wrap flags on shift,
a test where %x is not `1`, and ensure that tests where %bit
is a constant bitwidth-1, or is not a constant bitwidth-1
test both liveout values.
The current state of the transform is still not enough to support
my motivational pattern, because it has one more "induction variable".
I have delayed posting this patch, because originally even just rewriting
the loop as countable wasn't enough to nicely transform my motivational pattern,
because i expected that extra IV to be rewritten afterwards,
but it wasn't happening until i fixed that in D91800.
So, this patch allows the 'left-shift until bittest' loop idiom
as long as the inserted ops are cheap,
and lifts any and all extra use checks on the instructions.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D92754
If the bitmask is for sign bit, instcombine would have canonicalized
the pattern into a proper sign bit check. Supporting that is still
simple, but requires a bit of a roundtrip - we first have to use
`decomposeBitTestICmp()`, and the rest again just works.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D91726
The handing of the case where the mask is a constant is trivial,
if said constant is a power of two, the bit in question is log2(mask),
rest just works.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D91725
The motivation here is the following inner loop in fp16/fp24 -> fp32 expander,
that runs as part of the floating-point DNG decompression in RawSpeed library:
cd380bb9a2/src/librawspeed/decompressors/DeflateDecompressor.cpp (L112-L115)
```
while (!(fp32_fraction & (1 << 23))) {
fp32_exponent -= 1;
fp32_fraction <<= 1;
}
```
(https://godbolt.org/z/r13YMh)
As one might notice, that loop is currently uncountable, and that whole code stays scalar.
Yet, it is rather trivial to make that loop countable:
https://godbolt.org/z/do8WMz
and we can prove that via alive2:
https://alive2.llvm.org/ce/z/7vQnji (ha nice, isn't it?)
... and that allow for the whole fp16->fp32 code to vectorize:
https://godbolt.org/z/7hYr13
Now, while i'd love to get there, i feel like i should take it in steps.
For now, this introduces support for the most basic case,
where the bit position is known as a variable,
and the loop *will* go away (has no live-outs other than the recurrence,
no extra instructions in the loop).
I have added sufficient (i believe) test coverage,
and alive2 is happy with those transforms.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D91038
The LCSSA pass makes use of a function insertDebugValuesForPHIs() to
propogate dbg.value() intrinsics to newly inserted PHI instructions. Faulty
behaviour occurs when the parent PHI of a newly inserted PHI is not the
most recent assignment to a source variable. insertDebugValuesForPHIs ends
up propagating a value that isn't the most recent assignemnt.
This change removes the call to insertDebugValuesForPHIs() from LCSSA,
preventing incorrect dbg.value intrinsics from being propagated.
Propagating variable locations between blocks will occur later, during
LiveDebugValues.
Differential Revision: https://reviews.llvm.org/D92576
First step after e113317958,
in these tests, DomTree is valid afterwards, so mark them as such,
so that they don't regress.
In further steps, SimplifyCFG transforms shall taught to preserve DomTree,
in as small steps as possible.
This adds support for loops like
unsigned clz(unsigned x) {
unsigned w = sizeof (x) * CHAR_BIT;
while (x) {
w--;
x >>= 1;
}
return w;
}
and
unsigned clz(unsigned x) {
unsigned w = sizeof (x) * CHAR_BIT - 1;
while (x >>= 1) {
w--;
}
return w;
}
To support these we look for add x, -1 as well as add x, 1 that
we already matched. If the value was -1 we need to subtract from
the initial counter value instead of adding to it.
Fixes PR48404.
Differential Revision: https://reviews.llvm.org/D92745
Explicitly opt-out llvm/test/Transforms/Attributor.
Verified by flipping the default value of allow-unused-prefixes and
observing that none of the failures were under llvm/test/Transforms.
Differential Revision: https://reviews.llvm.org/D92404
The function LoopIdiomRecognize::isLegalStore looks for stores in loops
that could be transformed into memset or memcpy. However, the algorithm
currently requires that we know how big the store is at runtime, i.e.
that the store size will not overflow an unsigned integer. For scalable
vectors we cannot guarantee this so I have changed the code to bail out
for now. In addition, even if we add a way to query the maximum value of
vscale in future we will still need to update the algorithm to cope with
non-constant strides. The additional cost associated with calculating
the memset and memcpy arguments will need to be taken into account as
well.
This patch also fixes up an implicit TypeSize -> uint64_t cast,
thereby removing a warning. I've added tests here showing a fixed
width vector loop being transformed into memcpy, and a scalable
vector loop remaining unchanged:
Transforms/LoopIdiom/memcpy-vectors.ll
Differential Revision: https://reviews.llvm.org/D87439
Loop Idiom Recognize Pass (LIRP) attempts to transform loops with subscripted arrays
into memcpy/memset function calls. In some particular situation, this transformation
introduces negative impacts. For example: https://bugs.llvm.org/show_bug.cgi?id=47300
This patch will enable users to disable a particular part of the transformation, while
he/she can still enjoy the benefit brought about by the rest of LIRP. The default
behavior stays unchanged: no part of LIRP is disabled by default.
Reviewed By: etiotto (Ettore Tiotto)
Differential Revision: https://reviews.llvm.org/D86262
Currently the SCEVExpander tries to re-use existing casts, even if they
are not exactly at the insertion point it was asked to create the cast.
To do so in some case, it creates a new cast at the insertion point and
updates all users to use the new cast.
This behavior is problematic, because it changes the IR outside of the
instructions created during the expansion. Therefore we cannot
completely undo all changes made during expansion.
This re-use should be only an extra optimization, so only using the new
cast in the expanded instructions should not be a correctness issue.
There are many cases equivalent instructions are created during
expansion.
This patch also adjusts findInsertPointAfter to skip instructions
inserted during expansion. This enables re-using existing casts without
the renaming any uses, by picking a better insertion point.
Reviewed By: efriedma, lebedev.ri
Differential Revision: https://reviews.llvm.org/D84399