Clean up the implementation of divide macro expansion by getting rid of a
FIXME regarding magic numbers and branch instructions. Match GAS' behaviour
for expansion of ddiv / div in the two and three operand cases. Add the two
operand alias for MIPSR6. Finally, optimize macro expansion cases where the
divisior is the $zero register.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D29887
llvm-svn: 294960
Summary:
The attached test case fails with "fatal error: error in backend:
misaligned pc-relative fixup value" as the jump table is misaligned.
The EmitAlignment existed already for ARM and Thumb-1 code, but was
missing for Thumb-2.
The test checks that the fatal error disappears when generating an obj
file, as well as checking the align directive is there when producing an
asm file.
Reviewers: rengolin, grosbach, t.p.northover, jmolloy, SjoerdMeijer, samparker
Reviewed By: samparker
Subscribers: samparker, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D29650
llvm-svn: 294950
We match a sequence of 3-4 instructions into a tTBB pseudo. One of our checks is that
a particular register in that sequence is killed (so it can be clobbered by the pseudo).
We weren't noticing if an errant MOV or other instruction had infiltrated the
sequence we were walking. If it had, and it defined the register we've already
identified as killed, it makes it live across the tBR_JT and thus unclobberable.
Notice this case and bail out.
llvm-svn: 294949
Summary:
Keep a vector of LocInfos around; one for each call to EmitInlineAsm.
Since each call to EmitInlineAsm creates a new buffer in the inline asm
SourceMgr, we can use the buffer number to map to the right LocInfo.
Reviewers: rengolin, grosbach, rnk, echristo
Reviewed By: rnk
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D29769
llvm-svn: 294947
When generating a floating point comparison we currently unconditionally
generate VCMPE. This has the sideeffect of setting the cumulative Invalid
bit in FPSCR if any of the operands are QNaN.
It is expected that use of a relational predicate on a QNaN value should
raise Invalid. Quoting from the C standard:
The relational and equality operators support the usual mathematical
relationships between numeric values. For any ordered pair of numeric
values exactly one of relationships the less, greater, equal and is true.
Relational operators may raise the floating-point exception when argument
values are NaNs.
The standard doesn't explicitly state the expectation for equality operators,
but the implication and obvious expectation is that equality operators
should not raise Invalid on a QNaN input, as those predicates are wholly
defined on unordered inputs (to return not equal).
Therefore, add a new operand to ARMISD::FPCMP and FPCMPZ indicating if
QNaN should raise Invalid, and pipe that through to TableGen.
llvm-svn: 294945
Before this patch compile time was about 21s (see below). After this patch
we have less than 2s (see bellow).
Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz
DAGCombiner - trunk
time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
real 0m1.685s
DAGCombiner + Speed patch
time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
real 0m1.655s
MachineCombiner w/o Speed patch
time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
real 0m21.614s
MachineCombiner + Speed patch
time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
real 0m1.593s
The test spill_fdiv.ll is attached to D29627
D29627 should be closed.
llvm-svn: 294936
reductions.
Currently, LLVM supports vectorization of horizontal reduction
instructions with initial value set to 0. Patch supports vectorization
of reduction with non-zero initial values. Also, it supports a
vectorization of instructions with some extra arguments, like:
```
float f(float x[], int a, int b) {
float p = a % b;
p += x[0] + 3;
for (int i = 1; i < 32; i++)
p += x[i];
return p;
}
```
Patch allows vectorization of this kind of horizontal reductions.
Differential Revision: https://reviews.llvm.org/D29727
llvm-svn: 294934
We now detect that both the extract and insert indices are non-zero and convert to a shuffle. This will be lowered as a blend for 256-bit vectors or as a vshuf operations for 512-bit vectors.
llvm-svn: 294931
This results in the simplifications inside of getNode running while we're legalizing nodes popped off the worklist during the final DAG combine. This basically makes a DAG combine like operation occur during this legalize step, but we don't handle something quite the same way. I think we don't recursively added the removed nodes to the DAG combiner worklist.
llvm-svn: 294929
The bug was introduced with:
https://reviews.llvm.org/rL294863
...and manifests as a selection failure in x86, but that's actually
another bug. This fix prevents wrong codegen with -0.0, but in the
more common case when we have NSZ and NNAN (-ffast-math), we should
still be able to fold this setcc/compare.
llvm-svn: 294924
Summary:
This adds support for placing predicateinfo such that it affects critical edges.
This fixes the issues mentioned by Nuno on the mailing list.
Depends on D29519
Reviewers: davide, nlopes
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29606
llvm-svn: 294921
I can't prove that we can select this instruction or the AVX/SSE version, but I'm adding it for consistency for now so I can continue matching the load folding tables.
llvm-svn: 294907
The target shuffle match function arguments were using the term 'Ops' but the function names referred to them as 'Inputs' - use 'Inputs' consistently.
llvm-svn: 294900
Initial 256-bit vector support - 512-bit support requires extra checks for AVX512BW support (PMOVZXBW) that will be handled in a future patch.
llvm-svn: 294896
proven larger than the loop-count
This fixes PR31098: Try to resolve statically data-dependences whose
compile-time-unknown distance can be proven larger than the loop-count,
instead of resorting to runtime dependence checking (which are not always
possible).
For vectorization it is sufficient to prove that the dependence distance
is >= VF; But in some cases we can prune unknown dependence distances early,
and even before selecting the VF, and without a runtime test, by comparing
the distance against the loop iteration count. Since the vectorized code
will be executed only if LoopCount >= VF, proving distance >= LoopCount
also guarantees that distance >= VF. This check is also equivalent to the
Strong SIV Test.
Reviewers: mkuper, anemet, sanjoy
Differential Revision: https://reviews.llvm.org/D28044
llvm-svn: 294892
default pipeline.
A clang with this patch built with ASan and asserts can build all of the
test-suite as well, so it seems to not uncover any latent problems.
Differential Revision: https://reviews.llvm.org/D29853
llvm-svn: 294888
All the invalidation issues and bugs in this seem to be fixed, it has
survived a full build of the test suite plus SPEC with asserts and ASan
enabled on the Clang binary used.
Differential Revision: https://reviews.llvm.org/D29815
llvm-svn: 294887
I don't know if anything other than x86 vectors is affected by this change, but this may allow
us to remove target-specific intrinsics for blendv* (vector selects). The simplification arises
from the fact that blendv* instructions only use the sign-bit when deciding which vector element
to choose for the destination vector. The mechanism to fold VSELECT into SHRUNKBLEND nodes already
exists in x86 lowering; this demanded bits change just enables the transform to fire more often.
The original motivation starts with a bug for DSE of masked stores that seems completely unrelated,
but I've explained the likely steps in this series here:
https://llvm.org/bugs/show_bug.cgi?id=11210
Differential Revision: https://reviews.llvm.org/D29687
llvm-svn: 294863
Removes duplicate constant extraction code in getTargetShuffleMaskIndices.
getTargetConstantBitsFromNode - adds support for VZEXT_MOVL(SCALAR_TO_VECTOR) and fail if the caller doesn't support undef bits.
llvm-svn: 294856