Commit Graph

5 Commits

Author SHA1 Message Date
Fangrui Song f31811f2dc [BasicAA] Rename deprecated -basicaa to -basic-aa
Follow-up to D82607
Revert an accidental change (empty.ll) of D82683
2020-06-26 20:41:37 -07:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Adam Nemet 32e6a34c02 [LDist] Match behavior between invoking via optimization pipeline or opt -loop-distribute
In r267672, where the loop distribution pragma was introduced, I tried
it hard to keep the old behavior for opt: when opt is invoked
with -loop-distribute, it should distribute the loop (it's off by
default when ran via the optimization pipeline).

As MichaelZ has discovered this has the unintended consequence of
breaking a very common developer work-flow to reproduce compilations
using opt: First you print the pass pipeline of clang
with -debug-pass=Arguments and then invoking opt with the returned
arguments.

clang -debug-pass will include -loop-distribute but the pass is invoked
with default=off so nothing happens unless the loop carries the pragma.
While through opt (default=on) we will try to distribute all loops.

This changes opt's default to off as well to match clang.  The tests are
modified to explicitly enable the transformation.

llvm-svn: 290235
2016-12-21 04:07:40 +00:00
Adam Nemet 938d3d63d6 New Loop Distribution pass
Summary:
This implements the initial version as was proposed earlier this year
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-January/080462.html).
Since then Loop Access Analysis was split out from the Loop Vectorizer
and was made into a separate analysis pass.  Loop Distribution becomes
the second user of this analysis.

The pass is off by default and can be enabled
with -enable-loop-distribution.  There is currently no notion of
profitability; if there is a loop with dependence cycles, the pass will
try to split them off from other memory operations into a separate loop.

I decided to remove the control-dependence calculation from this first
version.  This and the issues with the PDT are actively discussed so it
probably makes sense to treat it separately.  Right now I just mark all
terminator instruction required which keeps identical CFGs for each
distributed loop.  This seems to be working pretty well for 456.hmmer
where even though there is an empty if-then block in the distributed
loop initially, it gets completely removed.

The pass keeps DominatorTree and LoopInfo updated.  I've tested this
with -loop-distribute-verify with the testsuite where we distribute ~90
loops.  SimplifyLoop is violated in some cases and I have a FIXME
covering this.

Reviewers: hfinkel, nadav, aschwaighofer

Reviewed By: aschwaighofer

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8831

llvm-svn: 237358
2015-05-14 12:05:18 +00:00