...)) and (load (cast ...)): canonicalize toward the former.
Historically, we've tried to load using the type of the *pointer*, and
tried to match that type as closely as possible removing as many pointer
casts as we could and trading them for bitcasts of the loaded value.
This is deeply and fundamentally wrong.
Repeat after me: memory does not have a type! This was a hard lesson for
me to learn working on SROA.
There is only one thing that should actually drive the type used for
a pointer, and that is the type which we need to use to load from that
pointer. Matching up pointer types to the loaded value types is very
useful because it minimizes the physical size of the IR required for
no-op casts. Similarly, the only thing that should drive the type used
for a loaded value is *how that value is used*! Again, this minimizes
casts. And in fact, the *only* thing motivating types in any part of
LLVM's IR are the types used by the operations in the IR. We should
match them as closely as possible.
I've ended up removing some tests here as they were testing bugs or
behavior that is no longer present. Mostly though, this is just cleanup
to let the tests continue to function as intended.
The only fallout I've found so far from this change was SROA and I have
fixed it to not be impeded by the different type of load. If you find
more places where this change causes optimizations not to fire, those
too are likely bugs where we are assuming that the type of pointers is
"significant" for optimization purposes.
llvm-svn: 220138
cases where the alloca type, the load types, and the store types used
all disagree.
Previously, the only way that vector-based promotion occured was if the
alloca type was a vector type. This was one of the *very* few remaining
uses of the alloca's type to guide SROA/mem2reg left in LLVM. It turns
out it was a bad idea.
The alloca type can change very easily based on the mixture of types
loaded and stored to that alloca. We shouldn't be relying on it as
a signal for very much. Instead, the source of truth should be loads and
stores. We should canonicalize the loads and stores as much as possible
and then rely on them exclusively in SROA.
When looking and loads and stores, we may find many different candidate
vector types. This change will let SROA try all of them to find a vector
type which is a viable way to promote the entire alloca to a vector
register.
With this change, it becomes possible to do better canonicalization and
optimization of loads and stores without breaking SROA in random ways,
and that should allow fixing a core source of performance loss in hot
numerical loops such as those in Eigen.
llvm-svn: 220116
TL;DR: Indexing maps with [] creates missing entries.
The long version:
When selecting lifetime intrinsics, we index the *static* alloca map with the AllocaInst we find for that lifetime. Trouble is, we don't first check to see if this is a dynamic alloca.
On the attached example, this causes a dynamic alloca to create an entry in the static map, and returns 0 (the default) as the frame index for that lifetime. 0 was used for the frame index of the stack protector, which given that it now has a lifetime, is coloured, and merged with other stack slots.
PEI would later trigger an assert because it expects the stack protector to not be dead.
This fix ensures that we only get frame indices for static allocas, ie, those in the map. Dynamic ones are effectively dropped, which is suboptimal, but at least isn't completely broken.
rdar://problem/18672951
llvm-svn: 220099
This reverts commit r219899.
This also updates byval-tail-call.ll to make it clear what was breaking.
Adding r219899 again will cause the load/store to disappear.
llvm-svn: 220093
With VSX enabled, LLVM crashes when compiling
test/CodeGen/PowerPC/fma.ll. I traced this to the liveness test
that's revised in this patch. The interval test is designed to only
work for virtual registers, but in this case the AddendSrcReg is
physical. Since there is already a walk of the MIs between the
AddendMI and the FMA, I added a check for def/kill of the AddendSrcReg
in that loop. At Hal Finkel's request, I converted the liveness test
to an assert restricted to virtual registers.
I've changed the fma.ll test to have VSX and non-VSX variants so we
can test both kinds of multiply-adds.
llvm-svn: 220090
The generic code trying to use findCommutedOpIndices won't
understand that it needs to swap the modifier operands also,
so it should fail if they are set.
llvm-svn: 220064
When the input to a store instruction was a zero vector, the backend
always selected a normal vector store regardless of the non-temporal
hint. This is fixed by this patch.
This fixes PR19370.
llvm-svn: 220054
We should be talking about the number of source elements, not the number of destination elements, given we know at this point that the source and dest element numbers are not the same.
While we're at it, avoid writing to std::vector::end()...
Bug found with random testing and a lot of coffee.
llvm-svn: 220051
Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types. This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled. Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests. I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature. For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
llvm-svn: 220047
v2: use dyn_cast
fixup comments
v3: use cast
Reviewed-by: Matt Arsenault <arsenm2@gmail.com>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 220044
DSE's overlap checking contained special logic, used only when no DataLayout
was available, which inferred a complete overwrite when the pointee types were
equal. This logic seems fine for regular loads/stores, but does not work for
memcpy and friends. Instead of fixing this, I'm just removing it.
Philosophically, transformations should not contain enhanced behavior used only
when data layout is lacking (data layout should be strictly additive), and
maintaining these rarely-tested code paths seems not worthwhile at this stage.
Credit to Aliaksei Zasenka for the bug report and the diagnosis. The test case
(slightly reduced from that provided by Aliaksei) replaces the original
contents of test/Transforms/DeadStoreElimination/no-targetdata.ll -- a few
other tests have been updated to have a data layout.
llvm-svn: 220035
The only difference from r219829 is using
getOrCreateSectionSymbol(*ELFSec)
instead of
GetOrCreateSymbol(ELFSec->getSectionName())
in ELFObjectWriter which causes us to use the correct section symbol even if
we have multiple sections with the same name.
Original messages:
r219829:
Correctly handle references to section symbols.
When processing assembly like
.long .text
we were creating a new undefined symbol .text. GAS on the other hand would
handle that as a reference to the .text section.
This patch implements that by creating the section symbols earlier so that
they are visible during asm parsing.
The patch also updates llvm-readobj to print the symbol number in the relocation
dump so that the test can differentiate between two sections with the same name.
r219835:
Allow forward references to section symbols.
llvm-svn: 220021
The bug is in ARMConstantIslands::createNewWater where the upper bound of the
new water split point is computed:
// This could point off the end of the block if we've already got constant
// pool entries following this block; only the last one is in the water list.
// Back past any possible branches (allow for a conditional and a maximally
// long unconditional).
if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
}
The split point is supposed to be somewhere between the machine instruction that
loads from the constant pool entry and the end of the basic block, before branch
instructions. The code above is fine if the basic block is large enough and
there are a sufficient number of instructions following the machine instruction.
However, if the machine instruction is near the end of the basic block,
BaseInsertOffset can point to the machine instruction or another instruction
that precedes it, and this can lead to convergence failure.
This commit fixes this bug by ensuring BaseInsertOffset is larger than the
offset of the instruction following the constant-loading instruction.
rdar://problem/18581150
llvm-svn: 220015
Revert "Correctly handle references to section symbols."
Revert "Allow forward references to section symbols."
Rui found a regression I am debugging.
llvm-svn: 220010
This is in preparation for another patch that makes patchpoints invokable.
Reviewers: atrick, ributzka
Reviewed By: ributzka
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5657
llvm-svn: 219967
'AS'.
Using 'S' as this was a terrible idea. Arguably, 'AS' is not much
better, but it at least follows the idea of using initialisms and
removes active confusion about the AllocaSlices variable and a Slice
variable.
llvm-svn: 219963
clang-modernize.
I did have to clean up the variable types and whitespace a bit because
the use of auto made the code much less readable here.
llvm-svn: 219962
Summary:
Backends can use setInsertFencesForAtomic to signal to the middle-end that
montonic is the only memory ordering they can accept for
stores/loads/rmws/cmpxchg. The code lowering those accesses with a stronger
ordering to fences + monotonic accesses is currently living in
SelectionDAGBuilder.cpp. In this patch I propose moving this logic out of it
for several reasons:
- There is lots of redundancy to avoid: extremely similar logic already
exists in AtomicExpand.
- The current code in SelectionDAGBuilder does not use any target-hooks, it
does the same transformation for every backend that requires it
- As a result it is plain *unsound*, as it was apparently designed for ARM.
It happens to mostly work for the other targets because they are extremely
conservative, but Power for example had to switch to AtomicExpand to be
able to use lwsync safely (see r218331).
- Because it produces IR-level fences, it cannot be made sound ! This is noted
in the C++11 standard (section 29.3, page 1140):
```
Fences cannot, in general, be used to restore sequential consistency for atomic
operations with weaker ordering semantics.
```
It can also be seen by the following example (called IRIW in the litterature):
```
atomic<int> x = y = 0;
int r1, r2, r3, r4;
Thread 0:
x.store(1);
Thread 1:
y.store(1);
Thread 2:
r1 = x.load();
r2 = y.load();
Thread 3:
r3 = y.load();
r4 = x.load();
```
r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all seq_cst.
But if they are lowered to monotonic accesses, no amount of fences can prevent it..
This patch does three things (I could cut it into parts, but then some of them
would not be tested/testable, please tell me if you would prefer that):
- it provides a default implementation for emitLeadingFence/emitTrailingFence in
terms of IR-level fences, that mimic the original logic of SelectionDAGBuilder.
As we saw above, this is unsound, but the best that can be done without knowing
the targets well (and there is a comment warning about this risk).
- it then switches Mips/Sparc/XCore to use AtomicExpand, relying on this default
implementation (that exactly replicates the logic of SelectionDAGBuilder, so no
functional change)
- it finally erase this logic from SelectionDAGBuilder as it is dead-code.
Ideally, each target would define its own override for emitLeading/TrailingFence
using target-specific fences, but I do not know the Sparc/Mips/XCore memory model
well enough to do this, and they appear to be dealing fine with the ARM-inspired
default expansion for now (probably because they are overly conservative, as
Power was). If anyone wants to compile fences more agressively on these
platforms, the long comment should make it clear why he should first override
emitLeading/TrailingFence.
Test Plan: make check-all, no functional change
Reviewers: jfb, t.p.northover
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5474
llvm-svn: 219957