When investigating various things, we often have a file offset
and what to know what's in the PDB at that address. For example
we may be doing a binary comparison of two LLD-generated PDBs
to look for sources of non-determinism, or we may wish to compare
an LLD-generated PDB with a Microsoft generated PDB for sources
of byte-for-byte incompatibility. In these cases, we can do a
binary diff of the two files, and once we find a mismatched byte
we can use explain to figure out what that byte is, immediately
honining in on the problem.
This patch implements this by trying to narrow the meaning of
a particular file offset down as much as possible.
Differential Revision: https://reviews.llvm.org/D44959
llvm-svn: 328799
This has been made obsolete by the fact that almost all of the
things it previously checked for are no longer relevant since
we can just compare bytes in a lot of places.
llvm-svn: 328562
When investigating bugs in PDB generation, the first step is
often to do the same link with link.exe and then compare PDBs.
But comparing PDBs is hard because two completely different byte
sequences can both be correct, so it hampers the investigation when
you also have to spend time figuring out not just which bytes are
different, but also if the difference is meaningful.
This patch fixes a couple of cases related to string table emission,
hash table emission, and the order in which we emit strings that
makes more of our bytes the same as the bytes generated by MS PDBs.
Differential Revision: https://reviews.llvm.org/D44810
llvm-svn: 328348
This is still failing on a different bot this time due to some
issue related to hashing absolute paths. Reverting until I can
figure it out.
llvm-svn: 328014
The issue causing this to fail in certain configurations
should be fixed.
It was due to the fact that DIA apparently expects there to be
a null string at ID 1 in the string table. I'm not sure why this
is important but it seems to make a difference, so set it.
llvm-svn: 328002
Natvis is a debug language supported by Visual Studio for
specifying custom visualizers. The /NATVIS option is an
undocumented link.exe flag which will take a .natvis file
and "inject" it into the PDB. This way, you can ship the
debug visualizers for a program along with the PDB, which
is very useful for postmortem debugging.
This is implemented by adding a new "named stream" to the
PDB with a special name of /src/files/<natvis file name>
and simply copying the contents of the xml into this file.
Additionally, we need to emit a single stream named
/src/headerblock which contains a hash table of embedded
files to records describing them.
This patch adds this functionality, including the /NATVIS
option to lld-link.
Differential Revision: https://reviews.llvm.org/D44328
llvm-svn: 327895
It previously only worked when the key and value types were
both 4 byte integers. We now have a use case for a non trivial
value type, so we need to extend it to support arbitrary value
types, which means templatizing it.
llvm-svn: 327647
Injected sources are basically a way to add actual source file content
to your PDB. Presumably you could use this for shipping your source code
with your debug information, but in practice I can only find this being
used for embedding natvis files inside of PDBs.
In order to effectively test LLVM's natvis file injection, we need a way
to dump the injected sources of a PDB in a way that is authoritative
(i.e. based on Microsoft's understanding of the PDB format, and not
LLVM's). To this end, I've added support for dumping injected sources
via DIA. I made a PDB file that used the /natvis option to generate a
test case.
Differential Revision: https://reviews.llvm.org/D44405
llvm-svn: 327428
Summary: This avoids crashing when a user tries to dump a pdb with the `-native` option.
Reviewers: zturner, llvm-commits, rnk
Reviewed By: zturner
Subscribers: mgrang
Differential Revision: https://reviews.llvm.org/D44117
llvm-svn: 326863
Summary:
The built-in PDB types enum has been extended to include char16_t and char32_t.
llvm-pdbutil was hitting an llvm_unreachable because it didn't know about these
new values. The new values are not yet in the DIA documentation, but are
listed in the cvconst.h header that comes as part of the DIA SDK.
Reviewers: asmith, zturner, rnk
Subscribers: stella.stamenova, llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D43646
llvm-svn: 325838
This was originally reported as a bug with the symptom being "cvdump
crashes when printing an LLD-linked PDB that has an S_FILESTATIC record
in it". After some additional investigation, I determined that this was
a symptom of a larger problem, and in fact the real problem was in the
way we emitted the global PDB string table. As evidence of this, you can
take any lld-generated PDB, run cvdump -stringtable on it, and it would
return no results.
My hypothesis was that cvdump could not *find* the string table to begin
with. Normally it would do this by looking in the "named stream map",
finding the string /names, and using its value as the stream index. If
this lookup fails, then cvdump would fail to load the string table.
To test this hypothesis, I looked at the name stream map generated by a
link.exe PDB, and I emitted exactly those bytes into an LLD-generated
PDB. Suddenly, cvdump could read our string table!
This code has always been hacky and we knew there was something we
didn't understand. After all, there were some comments to the effect of
"we have to emit strings in a specific order, otherwise things don't
work". The key to fixing this was finally understanding this.
The way it works is that it makes use of a generic serializable hash map
that maps integers to other integers. In this case, the "key" is the
offset into a buffer, and the value is the stream number. If you index
into the buffer at the offset specified by a given key, you find the
name. The underlying cause of all these problems is that we were using
the identity function for the hash. i.e. if a string's offset in the
buffer was 12, the hash value was 12. Instead, we need to hash the
string *at that offset*. There is an additional catch, in that we have
to compute the hash as a uint32 and then truncate it to uint16.
Making this work is a little bit annoying, because we use the same hash
table in other places as well, and normally just using the identity
function for the hash function is actually what's desired. I'm not
totally happy with the template goo I came up with, but it works in any
case.
The reason we never found this bug through our own testing is because we
were building a /parallel/ hash table (in the form of an
llvm::StringMap<>) and doing all of our lookups and "real" hash table
work against that. I deleted all of that code and now everything goes
through the real hash table. Then, to test it, I added a unit test which
adds 7 strings and queries the associated values. I test every possible
insertion order permutation of these 7 strings, to verify that it really
does work as expected.
Differential Revision: https://reviews.llvm.org/D43326
llvm-svn: 325386
Summary:
- Fix a bug in PrettyBuiltinDumper that returns "void" as the name for
an unspecified builtin type. Since the unspecified param of a variadic
function is considered a builtin of unspecified type in PDBs, we set
"..." for its name.
- Provide a method to determine if a PDBSymbolFunc is variadic in
PrettyFunctionDumper since PDBSymbolFunc::getArgument() doesn't return the
last unspecified-type param.
- Add a pretty-func-dumper.test to test pretty dumping of variadic
functions.
Reviewers: zturner, llvm-commits
Reviewed By: zturner
Differential Revision: https://reviews.llvm.org/D41801
llvm-svn: 322608
This is not a record type that clang currently generates,
but it is a record that is encountered in object files generated
by cl. This record is unusual in that it refers directly to
the string table instead of indirectly to the string table via
the FileChecksums table. Because of this, it was previously
overlooked and we weren't remapping the string indices at all.
This would lead to crashes in MSVC when trying to display a
variable whose debug info involved an S_FILESTATIC.
Original bug report by Alexander Ganea
Differential Revision: https://reviews.llvm.org/D41718
llvm-svn: 321883
This is a special code that indicates that it's a function id.
While I'm still not certain how to interpret these, we definitely
should *not* be using these values as indices into an array directly.
For now, when we encounter one of these, just print the numeric value.
llvm-svn: 320775
A couple of places in LLD were passing references to
TypeTableCollections around, which makes it hard to change the
implementation at runtime. However, these cases only needed to
iterate over the types in the collection, and TypeCollection
already provides a handy abstract interface for this purpose.
By implementing this interface, we can get rid of the need to
pass TypeTableBuilder references around, which should allow us
to swap the implementation at runtime in subsequent patches.
llvm-svn: 319345
The motivation behind this patch is that future directions require us to
be able to compute the hash value of records independently of actually
using them for de-duplication.
The current structure of TypeSerializer / TypeTableBuilder being a
single entry point that takes an unserialized type record, and then
hashes and de-duplicates it is not flexible enough to allow this.
At the same time, the existing TypeSerializer is already extremely
complex for this very reason -- it tries to be too many things. In
addition to serializing, hashing, and de-duplicating, ti also supports
splitting up field list records and adding continuations. All of this
functionality crammed into this one class makes it very complicated to
work with and hard to maintain.
To solve all of these problems, I've re-written everything from scratch
and split the functionality into separate pieces that can easily be
reused. The end result is that one class TypeSerializer is turned into 3
new classes SimpleTypeSerializer, ContinuationRecordBuilder, and
TypeTableBuilder, each of which in isolation is simple and
straightforward.
A quick summary of these new classes and their responsibilities are:
- SimpleTypeSerializer : Turns a non-FieldList leaf type into a series of
bytes. Does not do any hashing. Every time you call it, it will
re-serialize and return bytes again. The same instance can be re-used
over and over to avoid re-allocations, and in exchange for this
optimization the bytes returned by the serializer only live until the
caller attempts to serialize a new record.
- ContinuationRecordBuilder : Turns a FieldList-like record into a series
of fragments. Does not do any hashing. Like SimpleTypeSerializer,
returns references to privately owned bytes, so the storage is
invalidated as soon as the caller tries to re-use the instance. Works
equally well for LF_FIELDLIST as it does for LF_METHODLIST, solving a
long-standing theoretical limitation of the previous implementation.
- TypeTableBuilder : Accepts sequences of bytes that the user has already
serialized, and inserts them by de-duplicating with a hash table. For
the sake of convenience and efficiency, this class internally stores a
SimpleTypeSerializer so that it can accept unserialized records. The
same is not true of ContinuationRecordBuilder. The user is required to
create their own instance of ContinuationRecordBuilder.
Differential Revision: https://reviews.llvm.org/D40518
llvm-svn: 319198
The type index is from the TPI stream, not the IPI stream. Fix the
dumper, fix type index discovery, and add a test in LLD.
Also improve the log message we emit when we fail to rewrite type
indices in LLD. That's how I found this bug.
llvm-svn: 316461
The list of register ids was previously written out in a couple of dirrent
places. This puts it in a .def file and also adds a few more registers (e.g.
the x87 regs) which should lead to more readable dumps, but I didn't include
the whole list since that seems unnecessary.
X86_MC::initLLVMToSEHAndCVRegMapping is pretty ugly, but at least it's not
relying on magic constants anymore. The TODO of using tablegen still stands.
Differential revision: https://reviews.llvm.org/D38480
llvm-svn: 314821
It is possible for two modules to have the same name if they are
archive members with the same name, or if we are doing LTO (in which
case all modules will have the name "lto.tmp").
Differential Revision: https://reviews.llvm.org/D37589
llvm-svn: 312744
We have llvm-readobj for dumping CodeView from object files, and
llvm-pdbutil has always been more focused on PDB. However,
llvm-pdbutil has a lot of useful options for summarizing debug
information in aggregate and presenting high level statistical
views. Furthermore, it's arguably better as a testing tool since
we don't have to write tests to conform to a state-machine like
structure where you match multiple lines in succession, each
depending on a previous match. llvm-pdbutil dumps much more
concisely, so it's possible to use single-line matches in many
cases where as with readobj tests you have to use multi-line
matches with an implicit state machine.
Because of this, I'm adding object file support to llvm-pdbutil.
In fact, this mirrors the cvdump tool from Microsoft, which also
supports both object files and pdb files. In the future we could
perhaps rename this tool llvm-cvutil.
In the meantime, this allows us to deep dive into object files
the same way we already can with PDB files.
llvm-svn: 312358
This adds a new command line option, -udt-stats, which breaks
down the stats of S_UDT records. These are one of the biggest
contributors to the size of /DEBUG:FASTLINK PDBs, so they need
some additional tools to be able to analyze their usage. This
option will dig into each S_UDT record and determine what kind
of record it points to, and then break down the statistics by
the target type. The goal here is to identify how our object
files differ from MSVC object files in S_UDT records, so that
we can output fewer of them and reach size parity.
llvm-svn: 312276
This adds support for dumping a summary of module symbols
and CodeView debug chunks. This option prints a table for
each module of all of the symbols that occurred in the module
and the number of times it occurred and total byte size. Then
at the end it prints the totals for the entire file.
Additionally, this patch adds the -jmc (just my code) option,
which suppresses modules which are from external libraries or
linker imports, so that you can focus only on the object files
and libraries that originate from your own source code.
llvm-svn: 311338
When dumping, we were treating the S_INLINESITESYM as referring
to a type record, when it actually refers to an id record. We
had this correct in TypeIndexDiscovery, so our merging algorithm
should be fine, but we had it wrong in the dumper, which means it
would appear to work most of the time, unless the index was out
of bounds in the type stream, when it would fail. Fixed this, and
audited a few other cases to make them match the behavior in
TypeIndexDiscovery.
Also, I've now observed a new symbol record with kind 0x1168 which
I have no clue what it is, so to avoid crashing we have to just
print "Unknown Symbol Kind".
llvm-svn: 311117
1) We weren't handling symbol types that weren't able to parse,
even if we knew what the leaf type was. This was triggering
when trying to dump /DEBUG:FASTLINK PDBs, where we expect a
certain symbol to show up, but we just don't know how to parse
it.
2) We lost the code for dumping record bytes, so this was added
back.
llvm-svn: 311116
PDBs need to contain 1 module for each object file/compiland,
and a special one synthesized by the linker. This one contains
a symbol record for each output section in the executable with
its address information. This patch adds such symbols to the
linker module. Note that we also are supposed to add an
S_COFFGROUP symbol for what appears to be each input section that
contributes to each output section, but it's not entirely clear
how to generate these yet, so I'm leaving that for a separate
patch.
llvm-svn: 310754
In the refactor to merge the publics and globals stream, a bug
was introduced that wrote the wrong value for one of the fields
of the PublicsStreamHeader. This caused debugging in WinDbg
to break.
We had no way of dumping any of these fields, so in addition to
fixing the bug I've added dumping support for them along with a
test that verifies the correct value is written.
llvm-svn: 310439
The compiler outputs PROC32_ID symbols into the object files
for functions, and these symbols have an embedded type index
which, when copied to the PDB, refer to the IPI stream. However,
the symbols themselves are also converted into regular symbols
(e.g. S_GPROC32_ID -> S_GPROC32), and type indices in the regular
symbol records refer to the TPI stream. So this patch applies
two fixes to function records.
1. It converts ID symbols to the proper non-ID record type.
2. After remapping the type index from the object file's index
space to the PDB file/IPI stream's index space, it then
remaps that index to the TPI stream's index space by.
Besides functions, during the remapping process we were also
discarding symbol record types which we did not recognize.
In particular, we were discarding S_BPREL32 records, which is
what MSVC uses to describe local variables on the stack. So
this patch fixes that as well by copying them to the PDB.
Differential Revision: https://reviews.llvm.org/D36426
llvm-svn: 310394
This extends the native reader to enable llvm-pdbutil to list the enums in a
PDB and it includes a simple test. It does not yet list the values in the
enumerations, which requires an actual implementation of
NativeEnumSymbol::FindChildren.
To exercise this code, use a command like:
llvm-pdbutil pretty -native -enums foo.pdb
Differential Revision: https://reviews.llvm.org/D35738
llvm-svn: 310144
Image section headers are stored in the DBI stream, but we
had no way to dump them. This patch adds dumping support,
along with some tests that LLD actually dumps them correctly.
Differential Revision: https://reviews.llvm.org/D36332
llvm-svn: 310107
Often something interesting (like a symbol) is in a particular
module, and you don't want to dump symbols from all other 300
modules to see the one you want. This adds a -modi option so that
we only dump the specified module.
llvm-svn: 310000
Sometimes the normal module equivalence detection algorithm doesn't
quite work. For example, you might build the same program with
MSVC and clang-cl, outputting to different object files, exes, and
PDBs, then compare them. If the object files have different names
though, then they won't be treated as equivalent. This way we
can force specific module indices to be treated as equivalent.
llvm-svn: 309983
Recently problems have been discovered in the way we write the FPM
(free page map). In order to fix this, we first need to establish
a baseline about what a correct FPM looks like using an MSVC
generated PDB, so that we can then make our own generated PDBs
match. And in order to do this, the dumper needs a mode where it
can dump an FPM so that we can write tests for it.
This patch adds a command to dump the FPM, as well as a test against
a known-good PDB.
llvm-svn: 309894
The banner parameter is supposed to end in a separator, like ": ".
Otherwise, we get ugly errors like:
Error while reading publics streamNative error: blah blah
llvm-svn: 309332
The PDB "symbol stream" actually contains symbol records for the publics
and the globals stream. The globals and publics streams are essentially
hash tables that point into a single stream of records. In order to
match cvdump's behavior, we need to only dump symbol records referenced
from the hash table. This patch implements that, and then implements
global stream dumping, since it's just a subset of public stream
dumping.
Now we shouldn't see S_PROCREF or S_GDATA32 records when dumping
publics, and instead we should see those record in the globals stream.
llvm-svn: 309066
This includes the hash table, the address map, and the thunk table and
section offset table. The last two are only used for incremental
linking, which LLD doesn't support, so they are less interesting. The
hash table is particularly important to get right, since this is the one
of the streams that debuggers use to translate addresses to symbols.
llvm-svn: 308764
Summary:
This removes the CVTypeVisitor updater and verifier classes. They were
made dead by the minimal type dumping refactoring. Replace them with a
single function that takes a type record and produces a hash. Call this
from the minimal type dumper and compare the hash.
I also noticed that the microsoft-pdb reference repository uses a basic
CRC32 for records that aren't special. We already have an implementation
of that CRC ready to use, because it's used in COFF for ICF.
I'll make LLD call this hashing utility in a follow-up change. We might
also consider using this same hash in type stream merging, so that we
don't have to hash our records twice.
Reviewers: inglorion, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35515
llvm-svn: 308240
Summary:
We were treating the GUIDs in TypeServer2Record as strings, and the
non-ASCII bytes in the GUID would not round-trip through YAML.
We already had the PDB_UniqueId type portably represent a Windows GUID,
but we need to hoist that up to the DebugInfo/CodeView library so that
we can use it in the TypeServer2Record as well as in PDB parsing code.
Reviewers: inglorion, amccarth
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35495
llvm-svn: 308234
Summary:
Instead of wiring these through the CVTypeVisitor interface, clients
should inspect the CVTypeArray before visiting it and potentially load
up the type server's TPI stream if they need it.
No tests relied on this functionality because LLD was the only client.
Reviewers: ruiu
Subscribers: mgorny, hiraditya, zturner, llvm-commits
Differential Revision: https://reviews.llvm.org/D35394
llvm-svn: 308212
This was originally reverted because of two issues.
1) Printing ANSI color escape codes even when outputting to
a file
2) Module name comparisons were failing when comparing a PDB
generated on one machine to a PDB generated on another
machine.
I attempted to fix#2 by adding command line options which let
you specify prefixes to strip from the beginning of embedded
paths, which effectively lets us specify a path to "base" each
PDB from and only compare the parts under the base. But this is
tricky because PDB paths always use Windows path syntax, even
when they are created on non-Windows hosts. A problem still
existed when constructing the prefix to strip, where we were
accidentally using a host-specific path separator instead of
a Windows path separator.
This resubmission fixes the issue on Linux (and I have verified
that the test now passes on Linux).
llvm-svn: 307571
A test was checked in on Friday that worked by checking in an
object file and PDB generated locally by MSVC, and then having
the test run lld-link on the object file and diffing LLD's PDB
against the checked in PDB.
This failed because part of the diffing algorithm involves
determining if two modules are the same, and if so drilling into
the module and diffing individual fields of the module. The
only thing we can use to make this determination though is the
"name" of the module, which is a path to where the module (obj
file) was read from on the machine where it was linked. This
fails for obvious reasons when comparing a PDB generated on one
machine to a PDB on another machine.
The fix employed here is to add two command line options to the
diff subcommand, which allow the user to specify a "binary root
path". The bin root path, if specified, is stripped from the
beginning of any embedded PDB paths. The test is updated to
specify the user's local test output directory for the left
PDB, and is hardcoded to the location where the original PDB
was created for the right PDB. This way all the equivalence
comparisons should succeed.
llvm-svn: 307555
Some platforms require an explicit specialization of std::hash
for PdbRaw_FeaturesSig. Also a test involving case sensitivity
needed to be fixed. For now that particular check just accepts
any path even if they're completely different. Long term we
should output paths in the correct case to match MSVC.
llvm-svn: 307426
Without this we would just append whatever the user
wrote on the command line, so if we're in C:\foo
and we run lld-link bar/baz.obj, we would write
C:\foo\bar/baz.obj in various places in the PDB.
MSVC linker does not do this, so we shouldn't either.
This fixes some differences in the diff test, so we
update the test as well.
Differential Revision: https://reviews.llvm.org/D35092
llvm-svn: 307423
A couple of things were different about our generated PDBs.
1) We were outputting the wrong Version on the PDB Stream.
The version we were setting was newer than what MSVC is setting.
It's not clear what the implications are, but we change LLD
to use PdbImplVC70, as MSVC does.
2) For the optional debug stream indices in the DBI Stream, we
were outputting 0 to mean "the stream is not present". MSVC
outputs uint16_t(-1), which is the "correct" way to specify
that a stream is not present. So we fix that as well.
3) We were setting the PDB Stream signature to 0. This is supposed
to be the result of calling time(nullptr). Although this leads
to non-deterministic builds, a better way to solve that is by
having a command line option explicitly for generating a
reproducible build, and have the default behavior of lld-link
match the default behavior of link.
To test this, I'm making use of the new and improved `pdb diff`
sub command. To make it suitable for writing tests against, I had
to modify the diff subcommand slightly to print less verbose output.
Previously it would always print | <column> | <value1> | <value2> |
which is quite verbose, and the values are fragile. All we really
want to know is "did we produce the same value as link?" So I added
command line options to print a single character representing the
result status (different, identical, equivalent), and another to
hide the value display. Note that just inspecting the diff output
used to write the test, you can see some things that are obviously
wrong. That is just reflective of the fact that this is the state
of affairs today, not that we're asserting that this is "correct".
We can use this as a starting point to discover differences, fix
them, and update the test.
Differential Revision: https://reviews.llvm.org/D35086
llvm-svn: 307422
We're getting to the point that some MS tools (e.g. DIA) can recognize
our PDBs but others (e.g. link.exe) cannot. I think the way forward is
to improve our tooling to help us find differences more easily. For
example, if we can compile the same program with clang-cl and cl and
have a tool tell us all the places where the PDBs differ, this could
tell us what we're doing wrong. It's tricky though, because there are a
lot of "benign" differences in a PDB. For example, if the string table
in one PDB consists of "foo" followed by "bar" and in the other PDB it
consists of "bar" followed by "foo", this is not necessarily a critical
difference, as long as the uses of these strings also refer to the
correct location. On the other hand, if the second PDB doesn't even
contain the string "foo" at all, this is a critical difference.
diff mode has been in llvm-pdbutil for quite a while, but because of the
above challenge along with some others, it's been hard to make it
useful. I think this patch addresses that. It looks for all the same
things, but it now prints the output in tabular format (carefully
formatted and aligned into tables and fields), and it highlights
critical differences in red, non-critical differences in yellow, and
identical fields in green. This makes it easy to spot the places we
differ, and the general concept of outputting arbitrary fields in
tabular format can be extended to provide analysis into many of the
different types of information that show up in a PDB.
Differential Revision: https://reviews.llvm.org/D35039
llvm-svn: 307421
Based strictly on the name, this seems to have something to do
width edit & continue. The goal of this patch has nothing to do
with supporting edit and continue though. msvc link.exe writes
very basic information into this area even when *not* compiling
with support for E&C, and so the goal here is to bring lld-link
to parity. Since we cannot know what assumptions standard tools
make about the content of PDB files, we need to be as close as
possible.
This ECNames data structure is a standard PDB string hash table.
link.exe puts a single string into this hash table, which is the
full path to the PDB file on disk. It then references this string
from the module descriptor for the compiler generated `* Linker *`
module.
With this patch, lld-link will generate the exact same sequence of
bytes as MSVC link for this subsection for a given object file
input (as reported by `llvm-pdbutil bytes -ec`).
llvm-svn: 307356
Also avoids ODR violations by ensuring names used in headers find the
same entity, not different, file-local entities in each translation
unit.
llvm-svn: 307237
We had a lot of one-off tests for this type and that type,
or "every type that happens to be generated by this program
I built". Eventually I got a bug report filed where we were
crashing on a type that was not covered by any of these tests.
So this test carefully constructs a minimal C++ program that
will cause every type we support to be emitted. This ensures
full coverage for type records.
Differential Revision: https://reviews.llvm.org/D34915
llvm-svn: 307187
Type records have a unique type index, but symbol records do
not. Instead, symbol records refer to other symbol records
by referencing their offset in the symbol stream. In a sense
this is the analogue of the TypeIndex, but we are not printing
it in the dumper. Printing it not only gives us more useful
information when manually investigating the contents of a PDB,
but also allows us to write better tests by enabling us to
verify that fields that reference other symbol records do
so correctly.
Differential Revision: https://reviews.llvm.org/D34906
llvm-svn: 306890
This is a short-term fix for PR33650 aimed to get the modules build bots green again.
Remove all the places where we use the LLVM_YAML_IS_(FLOW_)?SEQUENCE_VECTOR
macros to try to locally specialize a global template for a global type. That's
not how C++ works.
Instead, we now centrally define how to format vectors of fundamental types and
of string (std::string and StringRef). We use flow formatting for the former
cases, since that's the obvious right thing to do; in the latter case, it's
less clear what the right choice is, but flow formatting is really bad for some
cases (due to very long strings), so we pick block formatting. (Many of the
cases that were using flow formatting for strings are improved by this change.)
Other than the flow -> block formatting change for some vectors of strings,
this should result in no functionality change.
Differential Revision: https://reviews.llvm.org/D34907
Corresponding updates to clang, clang-tools-extra, and lld to follow.
llvm-svn: 306878
Previously we had the -type-index option which would dump the record of
a single, but we had no way to follow the dependency graph backwards and
also dump all dependent types.
Having this option makes test-writing better, because we can limit the
test to only those records that are of importance for the thing we're
trying to test, which allows us to use things like CHECK-NEXT to reduce
fragility.
Differential Revision: https://reviews.llvm.org/D34899
llvm-svn: 306852
This is useful when you want to look at a specific chunk of a
stream or look for discontinuities, and you need to know the
list of blocks occupied by a stream.
llvm-svn: 306150
This patch dumps the raw bytes of the pdb name map which contains
the mapping of stream name to stream index for the string table
and other reserved streams.
llvm-svn: 306148
Normally we can only make sense of the content of a PDB in terms
of streams and blocks, but in some cases it may be useful to dump
bytes at a specific absolute file offset. For example, if you
know that some interesting data is at a particular location and
you want to see some surrounding data.
llvm-svn: 306146
The goal here is to make it possible to display absolute
file offsets when dumping byets from an MSF. The problem is
that when dumping bytes from an MSF, often the bytes will
cross a block boundary and encounter a discontinuity. We
can't use the normal formatBinary() function for this because
this would just treat the sequence as entirely ascending, and
not account out-of-order blocks.
This patch adds a formatMsfData() function to our printer, and
then uses this function to improve the output of the -stream-data
command line option for dumping bytes from a particular stream.
Test coverage is also expanded to make sure to include all possible
scenarios of offsets, sizes, and crossing block boundaries.
llvm-svn: 306141
This idea originally came about when I was doing some deep
investigation of why certain bytes in a PDB that we round-tripped
differed from their original bytes in the source PDB. I found
myself having to hack up the code in many places to dump the
bytes of this substream, or that record. It would be nice if
we could just do this for every possible stream, substream,
debug chunk type, etc.
It doesn't make sense to put this under dump because there's just
so many options that would detract from the more common use case
of just dumping deserialized records. So making a new subcommand
seems like the most logical course of action. In doing so, we
already have two command line options that are suitable for this
new subcommand, so start out by moving them there.
llvm-svn: 306056
Now you run llvm-pdbutil dump <options>. This is a followup
after having renamed the tool, whereas before raw was obviously
just the style of dumping, whereas now "dump" is the action to
perform with the "util".
llvm-svn: 306055
This resubmits commit c0c249e9f2ef83e1d1e5f166b50673d92f3579d7.
It was broken due to some weird template issues, which have
since been fixed.
llvm-svn: 305517
This reverts commit 83ea17ebf2106859a51fbc2a86031b44d33696ad.
This is failing due to some strange template problems, so reverting
until it can be straightened out.
llvm-svn: 305505