Both GNU ld and MS link.exe support declaring ordinals this way.
A test will be added in lld.
Differential Revision: https://reviews.llvm.org/D39327
llvm-svn: 316690
This is in preparation for testing lld's upcoming relocation packing
feature (D39152). I have verified that this implementation correctly
unpacks the relocations from a Chromium DSO built with gold and the
Android relocation packer for ARM32 and ARM64.
Differential Revision: https://reviews.llvm.org/D39272
llvm-svn: 316543
This fixes exporting functions starting with an underscore, and
fully decorated fastcall/vectorcall functions.
Tests will be added in the lld repo.
Differential Revision: https://reviews.llvm.org/D39168
llvm-svn: 316316
This reverts commit 4e4ee1c507e2707bb3c208e1e1b6551c3015cbf5.
This is failing due to some code that isn't built on MSVC
so I didn't catch. Not immediately obvious how to fix this
at first glance, so I'm reverting for now.
llvm-svn: 315536
There's a lot of misuse of Twine scattered around LLVM. This
ranges in severity from benign (returning a Twine from a function
by value that is just a string literal) to pretty sketchy (storing
a Twine by value in a class). While there are some uses for
copying Twines, most of the very compelling ones are confined
to the Twine class implementation itself, and other uses are
either dubious or easily worked around.
This patch makes Twine's copy constructor private, and fixes up
all callsites.
Differential Revision: https://reviews.llvm.org/D38767
llvm-svn: 315530
An archive looks like
<header>
<symbol table>
<tail>
The symbol table refers to offsets in the tail. A complication is that
we would like to support symbol tables that use 64 bit offsets if it
turns out that any of the offsets is too big.
This patch changes the archive writer to first compute the tail. We
cannot just compute one big StringRef since that would require reading
every member upfront, but we can represent it as a series of
StringRefs.
Having done that it is much easier to compute the symbol table and all
offsets are computed before it is written. With this if there is an
accounting problem it will show up with a regular symbol table, not
just when a 64 bit one is needed.
llvm-svn: 314844
Previously these were being included as both imports and
exports, with the import being satisfied by the export
(or some strong symbol) at runtime. However proved
unnecessary and actually complicated linking as it meant
there was not a 1-to-1 mapping between a wasm function
/global index and a linker symbol.
Differential Revision: https://reviews.llvm.org/D38246
llvm-svn: 314245
It is useful for the symbol to contain the index of the
function of global it represents in the function/global
index space.
For imports we also store the import index so that the
linker can find, for example, the signature of the
corresponding function, which is defined by the import
In the long run we need to decide whether this API
surface should be closer to binary (where imported
functions are seperate) or the wasm spec (where the
function index space is unified).
Differential Revision: https://reviews.llvm.org/D38189
llvm-svn: 314230
When dsymutil generates the companion file, its strips all unnecessary
sections by omitting their body and setting the offset in their
corresponding load command to zero.
One such section is the .eh_frame section, as it contains runtime
information rather than debug information and is part of the __TEXT
segment. When reading this section, we would just read the number of
bytes specified in the load command, starting from offset 0 (i.e. the
beginning of the file).
Rather than trying to parse this obviously invalid section, dwarfdump
now skips this.
Differential revision: https://reviews.llvm.org/D38135
llvm-svn: 314208
Summary:
This manifested itself in lld since it meant that weak
symbols were not appearing in archive symbol tables.
Subscribers: jfb, dschuff, jgravelle-google, aheejin
Differential Revision: https://reviews.llvm.org/D38111
llvm-svn: 313838
Add adds support for naming data segments. This is useful
useful linkers so that they can merge similar sections.
Differential Revision: https://reviews.llvm.org/D37886
llvm-svn: 313795
This patch renames K_MIPS64 to K_GNU64 as part of a change to add
support for writing archives with 64-bit indexes in the symbol table.
llvm-svn: 313787
Add adds support for naming data segments. This is useful
useful linkers so that they can merge similar sections.
Differential Revision: https://reviews.llvm.org/D37886
llvm-svn: 313692
Move logic that allows for Triple deduction from an ObjectFile object
out of llvm-objdump.cpp into a public factory, found in the ObjectFile
class.
This should allow other tools in the future to use this logic without
reimplementation.
Patch by Mitch Phillips
Differential Revision: https://reviews.llvm.org/D37719
llvm-svn: 313605
This change only treats imported and exports functions and globals
as symbol table entries the object has a "linking" section (i.e. it is
relocatable object file).
In this case all globals must be of type I32 and initialized with
i32.const. This was previously being assumed but not checked for and
was causing a failure on big endian machines due to using the wrong
value of then union.
See: https://bugs.llvm.org/show_bug.cgi?id=34487
Differential Revision: https://reviews.llvm.org/D37497
llvm-svn: 312674
The code wasn't previously taking into account that the
global index space is not same as the into in the Globals
array since the latter does not include imported globals.
This fixes the WebAssembly waterfall failures.
Differential Revision: https://reviews.llvm.org/D37384
llvm-svn: 312340
writeArchive returned a pair, but the first element of the pair is always
its first argument on failure, so it doesn't make sense to return it from
the function. This patch change the return type so that it does't return it.
Differential Revision: https://reviews.llvm.org/D37313
llvm-svn: 312177
Summary:
Previously, llvm-cvtres crashes on .res files which are empty except for
the null header. This allows the library to simply pass over them.
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D37044
llvm-svn: 311625
When creating an import library from lld, the cases with
Name != ExtName shouldn't end up as a weak alias, but as a real
export of the new name, which is what actually is exported from
the DLL.
This restores the behaviour of renamed exports to what it was in
4.0.
The other half of this commit, including test, goes into lld.
Differential Revision: https://reviews.llvm.org/D36633
llvm-svn: 310991
Hook up the -k option (that in the original GNU dlltool removes the
@n suffix from the symbol that the final executable ends up linked to).
In llvm-dlltool, make sure that functions end up with the undecorate
name type if this option is set and they are decorated. In mingw, when
creating import libraries from def files instead of creating an import
library as a side effect of linking a DLL, the symbol names in the def
contain the stdcall/fastcall decoration (but no leading underscore).
By setting the undecorate name type, a linker linking to the import
library will omit the decoration from the DLL import entry.
With this in place, mingw-w64 for i386 built with llvm-dlltool/clang
produces import libraries that actually work.
Differential Revision: https://reviews.llvm.org/D36548
llvm-svn: 310990
The previous Name and ExtName aren't enough to convey all the nuances
between weak aliases and stdcall decorated function names.
A test for this will be added in LLD.
Differential Revision: https://reviews.llvm.org/D36544
llvm-svn: 310988
Summary:
isThumb returns true for Thumb triples (little and big endian), isARM
returns true for ARM triples (little and big endian).
There are a few more checks using arm/thumb that are not covered by
those functions, e.g. that the architecture is either ARM or Thumb
(little endian) or ARM/Thumb little endian only.
Reviewers: javed.absar, rengolin, kristof.beyls, t.p.northover
Reviewed By: rengolin
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D34682
llvm-svn: 310781
I was surprised to see the code model being passed to MC. After all,
it assembles code, it doesn't create it.
The one place it is used is in the expansion of .cfi directives to
handle .eh_frame being more that 2gb away from the code.
As far as I can tell, gnu assembler doesn't even have an option to
enable this. Compiling a c file with gcc -mcmodel=large produces a
regular looking .eh_frame. This is probably because in practice linker
parse and recreate .eh_frames.
In llvm this is used because the JIT can place the code and .eh_frame
very far apart. Ideally we would fix the jit and delete this
option. This is hard.
Apart from confusion another problem with the current interface is
that most callers pass CodeModel::Default, which is bad since MC has
no way to map it to the target default if it actually needed to.
This patch then replaces the argument with a boolean with a default
value. The vast majority of users don't ever need to look at it. In
fact, only CodeGen and llvm-mc use it and llvm-mc just to enable more
testing.
llvm-svn: 309884
Previously, the created object files for the import library were broken.
Write the symbol table before the string table. Simplify the code by
using a separate variable Prefix instead of duplicating a few lines.
Also update the coff-weak-exports to actually check that the generated
weak symbols can be found as intended.
Differential Revision: https://reviews.llvm.org/D36065
llvm-svn: 309555
This diff removes the second argument of the method MachOObjectFile::exports.
In all in-tree uses this argument is equal to "this" and
without this argument the interface seems to be cleaner.
Test plan: make check-all
llvm-svn: 309462
Summary:
ELF linkers generate __start_<secname> and __stop_<secname> symbols
when there is a value in a section <secname> where the name is a valid
C identifier. If dead stripping determines that the values declared
in section <secname> are dead, and we then internalize (and delete)
such a symbol, programs that reference the corresponding start and end
section symbols will get undefined reference linking errors.
To fix this, add the section name to the IRSymtab entry when a symbol is
defined in a specific section. Then use this in the gold-plugin to mark
the symbol as external and visible from outside the summary when the
section name is a valid C identifier.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D35639
llvm-svn: 309009
entries in libObject (done in r308690). In the case when the last node
has no children setting State.Current = Children + 1; where that would be past
Trie.end() is actually ok since the pointer is not used with zero children.
rdar://33490512
llvm-svn: 308924
lld needs a matching change for this will be my next commit.
Expect it to fail build until that matching commit is picked up by the bots.
Like the changes in r296527 for dyld bind entires and the changes in
r298883 for lazy bind, weak bind and rebase entries the export
entries are the last of the dyld compact info to have error handling added.
This follows the model of iterators that can fail that Lang Hanes
designed when fixing the problem for bad archives r275316 (or r275361).
So that iterating through the exports now terminates if there is an error
and returns an llvm::Error with an error message in all cases for malformed
input.
This change provides the plumbing for the error handling, all the needed
testing of error conditions and test cases for all of the unique error messages.
llvm-svn: 308690
Preserve the actual library name as provided by the user. This is
required to properly replicate link's behaviour about the module import
name handling. This requires an associated change to lld for updating
the tests for the proper behaviour for the import library module name
handling in various cases.
Associated tests will be part of the lld change.
llvm-svn: 308406
When I originally wrote this code, I neglected the fact that the import
library may be created for executables. This name is not the name of
the DLL, but rather the name for the imported module. It will be
embedded into the IAT/ILT reference. Rename it to make it more obvious.
NFC.
llvm-svn: 308384
When given an extension as part of the `library` directive in a def
file, the extension is preserved/honoured by link/lib. Behave similarly
when parsing the def file. This requires checking if a native extension
is provided as a keyword parameter. If no extension is present, append
a standard `.dll` or `.exe` extension.
This is best tested via lld, and I will add tests there as a follow up.
llvm-svn: 308383
A PE COFF spec compliant import library generator.
Intended to be used with mingw-w64.
Supports:
PE COFF spec (section 8, Import Library Format)
PE COFF spec (Aux Format 3: Weak Externals)
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D29892
This reapplies rL308329, which was reverted in rL308374
llvm-svn: 308379
A PE COFF spec compliant import library generator.
Intended to be used with mingw-w64.
Supports:
PE COFF spec (section 8, Import Library Format)
PE COFF spec (Aux Format 3: Weak Externals)
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D29892
llvm-svn: 308329
Summary:
This allows tools like lld that process relocations
to apply data relocation correctly. This information
is required because relocation are stored as section
offset.
Subscribers: jfb, dschuff, jgravelle-google, aheejin
Differential Revision: https://reviews.llvm.org/D35234
llvm-svn: 307741
This reverts commit 147f45ff24456aea59575fa4ac16c8fa554df46a.
Revert "Revert "Revert "Revert "Replace trivial use of external rc.exe by writing our own .res file.""""
This reverts commit 61a90a67ed54a1f0dfeab457b65abffa129569e4.
The patches were intially reverted because they were causing a failure
on CrWinClangLLD. Unfortunately, this was done haphazardly and didn't
compile, so the revert was reverted again quickly to fix this. One that
was done, the revert of the revert was itself reverted. This allowed me
to finally fix the actual bug in r307452. This patch re-enables the
code path that had originally been causing the bug, now that it (should)
be fixed.
llvm-svn: 307460
Summary:
The original cvtres.exe sets the high bit when an identifier offset
points to a string. Even though this is not mentioned in the spec, and
in fact does not seem to cause errors with most cases, for some reason
this causes a failure in Chromium where the new resource file is not
verified as a new version. This patch sets this high bit flag, and also
adds a test case to check that the output of our library is always
identical to original cvtres.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35099
llvm-svn: 307452
Model weakly defined symbols as symbols that are both
exports and imported and marked as weak. Local references
to the symbols refer to the import but the linker can
resolve this to the weak export if not strong symbol
is found at link time.
Differential Revision: https://reviews.llvm.org/D35029
llvm-svn: 307348
This reverts commit ae21ee0b6cacbc1efaf4d42502e71da2f0eb45c3.
The initial revert was done in order to prevent ongoing errors on
chromium bots such as CrWinClangLLD. However, this was done haphazardly
and I didn't realize there were test and compilation failures, so this
revert was reverted. Now that those have been fixed, we can revert the
revert of the revert.
llvm-svn: 307227
This reverts commit 5fecbbbe5049665d86834cf69d8f75db4f392308.
The initial revert was done in order to prevent ongoing errors on
chromium bots such as CrWinClangLLD. However, this was done haphazardly
and I didn't realize there were test and compilation failures, so this
revert was reverted. Now that those have been fixed, we can revert the
revert of the revert.
llvm-svn: 307226
This reverts commit 600d52c278e123dd08bee24c1f00932b55add8de.
This patch still seems to break CrWinClangLLD, reverting until I can
find root problem.
llvm-svn: 307189
This patch still seems to break CrWinClangLLD, reverting this once more
until I can discover root problem.
This reverts commit 3dbbc8ce43be50ffde2b1c655c6d3a25796fe78b.
llvm-svn: 307188
Summary:
This reverts commit 51931072a7c9a52540baf76fc30ef391d2529a2f.
This revert was originally done because the integrations of the new
WindowsResource library into LLD was causing error in chromium, due to
bugs in how resource sections were handled. These bugs were fixed,
meaning that the features may be reintegrated.
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D34922
llvm-svn: 306941
Symbols in the resource COFF file should be for .rsrc$02, where the
actual resource data is, not .rsrc$01, which contains the directory
tree.
Differential Revision: https://reviews.llvm.org/D34832
Patch by Joe Ranieri.
llvm-svn: 306853
This reverts commit d4c7e9fc63c10dbab0c30186ef8575474a704496.
This is done in order to address the failure of CrWinClangLLD etc. bots.
These throw an error of "side-by-side configuration is incorrect" during
compilation, which sounds suspiciously related to these manifest
changes.
Revert "Switch external cvtres.exe for llvm's own resource library."
This reverts commit 71fe8ef283a9dab9a3f21432c98466cbc23990d1.
llvm-svn: 306618
Summary:
This is the llvm part of the initial implementation to support Windows ARM64 COFF format.
I will gradually add more functionality in subsequent patches.
Reviewers: ruiu, rnk, t.p.northover, compnerd
Reviewed By: ruiu, compnerd
Subscribers: aemerson, mgorny, javed.absar, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D34705
llvm-svn: 306490
The overal size of the data section (including BSS)
is otherwise not included in the wasm binary.
Differential Revision: https://reviews.llvm.org/D34657
llvm-svn: 306459
This patch removes the dependency on the external rc.exe tool by writing
a simple .res file using our own library. In this patch I also added an
explicit definition for the .res file magic. Furthermore, I added a
unittest for embeded manifests and fixed a bug exposed by the test.
llvm-svn: 306311
This includes the safe SEH tables and the control flow guard function
table. LLD will emit the guard table soon, and I need a tool that dumps
them for testing.
llvm-svn: 305979
This will be needed in order to share the irsymtab string table with
the bitcode string table.
Differential Revision: https://reviews.llvm.org/D33971
llvm-svn: 305937
This fixes two build failures that only occur in certain
configurations:
- error: unused function 'operator<<'
- error: control reaches end of non-void function
Differential Revision: https://reviews.llvm.org/D34382
llvm-svn: 305770
This ensures that symbolic relocations are generated for stack
pointer manipulations.
These relocations are of type R_WEBASSEMBLY_GLOBAL_INDEX_LEB.
This change also adds support for reading relocations of this
type in WasmObjectFile.cpp.
Since its a globally imported symbol this does mean that
the get_global/set_global instruction won't be valid until
the objects are linked that global used in no longer an
imported global.
Differential Revision: https://reviews.llvm.org/D34172
llvm-svn: 305616
In this patch, I flip the switch in DriverUtils from using the external
cvtres.exe tool to using the Windows Resource library in llvm.
I also fixed a bug where .rsrc sections were marked as discardable
memory and therefore were placed in the wrong order in the final PE.
Furthermore, I modified WindowsResource to write the coff directly to a
memory buffer instead of to file, also had it use the machine types
already declared in COFF.h instead creating my own enum.
Finally, I flipped the switch to allow all unit tests that had
previously run only on windows due to a winres dependency to run
cross-platform.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34265
llvm-svn: 305592
Summary:
We were writing the length of the string based on system-endianness, and
not universally little-endian. This fixes that.
Reviewers: zturner
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D34159
llvm-svn: 305322
Summary: Apparently we need to write using a void* pointer on some architectures, or else alignment error is caused.
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D34166
llvm-svn: 305320
Summary: Added output to stderr so that we can actually see what is happening when the test fails on big endian.
Reviewers: zturner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34155
llvm-svn: 305314
This revert was done so that my other patch to add test framework could
land separately. Now the revert can be reverted and this patch can
reland.
This reverts commit 18b3c75b2b0d32601fb60a06b9672c33d6f0dff9.
llvm-svn: 305259
Summary: Added test cases for multiple machine types, file merging, multiple languages, and more resource types. Also fixed new bugs these tests exposed.
Subscribers: javed.absar, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34047
llvm-svn: 305258
I accidentally combined this patch with one for adding more tests, they
should be separated.
This reverts commit 3da218a523be78df32e637d3446ecf97c9ea0465.
llvm-svn: 305257
Summary:
Use the filepath used to open the archive member as the archive member
name instead of the file basename. This path might be absolute or
relative. This is important because the archive member name will show
up in the PDB, and we want our PDBs to look as much like MSVC's as
possible.
This also helps avoid an issue in our PDB module descriptor writing
code, which assumes that all module names are unique. Relative paths
still aren't guaranteed to be unique, but they're much better than
basenames, which definitely aren't unique.
Reviewers: ruiu, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33575
llvm-svn: 305223
Summary: Add the WindowsResourceCOFFWriter class for producing the final COFF after all parsing is done.
Reviewers: hiraditya!, zturner, ruiu
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34020
llvm-svn: 305092
No need in reinterpret_cast<StringTableOffset &> here, as struct coff_symbol Name is a unin
with the member StringTableOffset Offset. This union member could be accessed directly.
llvm-svn: 305029
This check is a requirement of the irsymtab builder, not of any
particular caller.
Differential Revision: https://reviews.llvm.org/D33970
llvm-svn: 305023
This data type includes the contents of a bitcode file.
Right now a bitcode file can only contain modules, but
a later change will add a symbol table.
Differential Revision: https://reviews.llvm.org/D33969
llvm-svn: 305019
This code now lives in lib/Object. The idea is that it can now be reused by
IRObjectFile among other things.
Differential Revision: https://reviews.llvm.org/D31921
llvm-svn: 304958
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
This reverts commit r304561 and re-lands r303490 & co.
The fix was to use "SymbolName" when translating LLD's internal export
list to lib/Object's short export struct. The SymbolName reflects the
actual symbol name, which may include fastcall and stdcall mangling bits
not included in the /EXPORT or .def file EXPORTS name:
@@ -434,8 +434,7 @@ std::vector<COFFShortExport> createCOFFShortExportFromConfig() {
std::vector<COFFShortExport> Exports;
for (Export &E1 : Config->Exports) {
COFFShortExport E2;
- E2.Name = E1.Name;
+ // Use SymbolName, which will have any stdcall or fastcall qualifiers.
+ E2.Name = E1.SymbolName;
E2.ExtName = E1.ExtName;
E2.Ordinal = E1.Ordinal;
E2.Noname = E1.Noname;
llvm-svn: 304573
This reverts commits r303490, r303491, r303493, and r303494.
This caused http://crbug.com/728726. Essentially, exporting stdcall
functions doesn't appear to work after this change. Reduced test case
soon.
llvm-svn: 304561
BIND_OPCODE_SET_DYLIB_SPECIAL_IMM(0) is a valid way to setp library
ordinal. MachOObject should set LibraryOrdinalSet even when IMM is zero.
llvm-svn: 304362
With fix of uninitialized variable.
Original commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 304078
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 304002
With fix of test compilation.
Initial commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section
which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses
with use of llvm::LoadedObjectInfo interface. We assigned file offsets as addressed.
Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason
of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well.
That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 303983
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section
which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses
with use of llvm::LoadedObjectInfo interface. We assigned file offsets as addressed.
Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason
of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well.
That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 303978
This is split up into two commits.
The will create the DEF parser in LLVM.
Check the following commit to see the removal from LLD
Reviewers: ruiu
Differential Revision: https://reviews.llvm.org/D32689
llvm-svn: 303490
Summary: Added the new modules in the Object/ folder. Updated the
llvm-cvtres interface as well, and added additional tests.
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D33180
llvm-svn: 303480
I revisited Decompressor API (issue with it was triggered during D32865 review)
and found it is probably provides more then we really need.
Issue was about next method's signature:
Error decompress(SmallString<32> &Out);
It is too strict. At first I wanted to change it to decompress(SmallVectorImpl<char> &Out),
but then found it is still not flexible because sticks to SmallVector.
During reviews was suggested to use templating to simplify code. Patch do that.
Differential revision: https://reviews.llvm.org/D33200
llvm-svn: 303331
Running `llvm-readobj -coff-directives msvcrt.lib` resulted in this error:
Invalid data was encountered while parsing the file
This happened because some of the object files in the archive have empty
`.drectve` sections. These empty sections result in a `parse_failed` error being
returned from `COFFObjectFile::getSectionContents()`, which in turn caused
`llvm-readobj` to stop. With this change, `getSectionContents` now returns
success, and like before the resulting array is empty.
Patch by Dave Lee.
Differential Revision: https://reviews.llvm.org/D32652
llvm-svn: 303014
Previously we had only supported the importing and
exporting of functions and globals.
Also, add usefull overload of getWasmSymbol() and
getNumberOfSymbols() in support of lld port.
Differential Revision: https://reviews.llvm.org/D33011
llvm-svn: 302601
The check for valid start function was inverted. Added a new
test in test/Object to check this case and fixed the existing
tests in for ObjectYAML.
Differential Revision: https://reviews.llvm.org/D32986
llvm-svn: 302560
Summary: Continue making updates to llvm-readobj to display resource sections. This is necessary for testing the up and coming cvtres tool.
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32609
llvm-svn: 302399
Summary:
This reverts commit 56beec1b1cfc6d263e5eddb7efff06117c0724d2.
Revert "Quick fix to D32609, it seems .o files are not transferred in all cases."
This reverts commit 7652eecd29cfdeeab7f76f687586607a99ff4e36.
Revert "Update llvm-readobj -coff-resources to display tree structure."
This reverts commit 422b62c4d302cfc92401418c2acd165056081ed7.
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32958
llvm-svn: 302397
Summary: Continue making updates to llvm-readobj to display resource sections. This is necessary for testing the up and coming cvtres tool.
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32609
llvm-svn: 302386
This is motivated by https://reviews.llvm.org/D32488 where I am trying
to add printing of the section type for incompatible sections to LLD
error messages. This patch allows us to use the same code in
llvm-readobj and LLD instead of duplicating the function inside LLD.
Patch by Alexander Richardson!
llvm-svn: 301921
Marking them as used causes them to be considered visible outside of LTO. This
prevents the symbols from being internalized or discarded, either by GlobalDCE
or by summary-based dead stripping in ThinLTO.
This change makes it unnecessary to add these symbols to llvm.compiler.used
in the backend, as the symbols are kept alive by virtue of being external,
so remove the backend code that handles that.
Fixes PR32798.
Differential Revision: https://reviews.llvm.org/D32544
llvm-svn: 301438
Summary:
Addends are used as offsets to addresses of globals
and can be both positive and negative. This change
prints libObject in line with the spec and the MC
layer.
Subscribers: jfb, dschuff
Differential Revision: https://reviews.llvm.org/D32507
llvm-svn: 301369
Instead of storing an UncommonIndex on the Symbol, use a flag bit to store
whether the Symbol has an Uncommon. This shrinks Chromium's .bc files (after
D32061) by about 1%.
Differential Revision: https://reviews.llvm.org/D32070
llvm-svn: 300514
Start using it in LLD to avoid needing to read bitcode again just to get the
target triple, and in llvm-lto2 to avoid printing symbol table information
that is inappropriate for the target.
Differential Revision: https://reviews.llvm.org/D32038
llvm-svn: 300300
Summary:
The linker needs to be able to determine whether a symbol is text or data to
handle the case of a common being overridden by a strong definition in an
archive. If the archive contains a text member of the same name as the common,
that function is discarded. However, if the archive contains a data member of
the same name, that strong definition overrides the common. This is a behavior
of ld.bfd, which the Qualcomm linker also supports in LTO.
Here's a test case to illustrate:
####
cat > 1.c << \!
int blah;
!
cat > 2.c << \!
int blah() {
return 0;
}
!
cat > 3.c << \!
int blah = 20;
!
clang -c 1.c
clang -c 2.c
clang -c 3.c
ar cr lib.a 2.o 3.o
ld 1.o lib.a -t
####
The correct output is:
1.o
(lib.a)3.o
Thanks to Shankar Easwaran and Hemant Kulkarni for the test case!
Reviewers: mehdi_amini, rafael, pcc, davide
Reviewed By: pcc
Subscribers: davide, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D31901
llvm-svn: 300205
Introduce symbol table data structures that can be potentially written to
disk, have the LTO library build those data structures using temporarily
constructed modules and redirect the LTO library implementation to go through
those data structures. This allows us to remove the LLVMContext and Modules
owned by InputFile.
With this change I measured a peak memory consumption decrease from 5.4GB to
2.8GB in a no-op incremental ThinLTO link of Chromium on Linux. The impact on
memory consumption is larger in COFF linkers where we are currently forced
to materialize all metadata in order to read linker options. Peak memory
consumption linking a large piece of Chromium for Windows with full LTO and
debug info decreases from >64GB (OOM) to 15GB.
Part of PR27551.
Differential Revision: https://reviews.llvm.org/D31364
llvm-svn: 299168
BIND_OPCODE_DONE/REBASE_OPCODE_DONE may appear at the end of the opcode array,
but they are not required to. The linker only adds them as padding to align the
opcodes to pointer size.
This fixes rdar://problem/31285560.
llvm-svn: 299104
Mostly this change adds support converting to and from
YAML which will allow us to write more test cases for
the WebAssembly MC and lld ports.
Better support for objdump, readelf, and nm will be in
followup CLs.
I had to update the two wasm test binaries because they
used the old style 'name' section which is no longer
supported.
Differential Revision: https://reviews.llvm.org/D31099
Patch by Sam Clegg
llvm-svn: 299101
rebase entry errors and test cases for each of the error checks.
Also verified with Nick Kledzik that a BIND_OPCODE_SET_ADDEND_SLEB
opcode is legal in a lazy bind table, so code that had that as an error
check was removed.
With MachORebaseEntry and MachOBindEntry classes now returning
an llvm::Error in all cases for malformed input the variables Malformed
and logic to set use them is no longer needed and has been removed
from those classes.
Also in a few places, removed the redundant Done assignment to true
when also calling moveToEnd() as it does that assignment.
This only leaves the dyld compact export entries left to have
error handling yet to be added for the dyld compact info.
llvm-svn: 298883
Summary:
The cumulative size of the bitcode files for a very large application
can be huge, particularly with -g. In a distributed build environment,
all of these files must be sent to the remote build node that performs
the thin link step, and this can exceed size limits.
The thin link actually only needs the summary along with a bitcode
symbol table. Until we have a proper bitcode symbol table, simply
stripping the debug metadata results in significant size reduction.
Add support for an option to additionally emit minimized bitcode
modules, just for use in the thin link step, which for now just strips
all debug metadata. I plan to add a cc1 option so this can be invoked
easily during the compile step.
However, care must be taken to ensure that these minimized thin link
bitcode files produce the same index as with the original bitcode files,
as these original bitcode files will be used in the backends.
Specifically:
1) The module hash used for caching is typically produced by hashing the
written bitcode, and we want to include the hash that would correspond
to the original bitcode file. This is because we want to ensure that
changes in the stripped portions affect caching. Added plumbing to emit
the same module hash in the minimized thin link bitcode file.
2) The module paths in the index are constructed from the module ID of
each thin linked bitcode, and typically is automatically generated from
the input file path. This is the path used for finding the modules to
import from, and obviously we need this to point to the original bitcode
files. Added gold-plugin support to take a suffix replacement during the
thin link that is used to override the identifier on the MemoryBufferRef
constructed from the loaded thin link bitcode file. The assumption is
that the build system can specify that the minimized bitcode file has a
name that is similar but uses a different suffix (e.g. out.thinlink.bc
instead of out.o).
Added various tests to ensure that we get identical index files out of
the thin link step.
Reviewers: mehdi_amini, pcc
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31027
llvm-svn: 298638
and test cases for each of the error checks.
To do this more plumbing was needed so that the segment indexes and
segment offsets can be checked. Basically what was done was the SegInfo
from llvm-objdump’s MachODump.cpp was moved into libObject for Mach-O
objects as BindRebaseSegInfo and it is only created when an iterator for
bind or rebase entries are created.
This commit really only adds the error checking and test cases for the
bind table entires and the checking for the lazy bind and weak bind entries
are still to be fully done as well as the rebase entires. Though some of
the plumbing for those are added with this commit. Those other error
checks and test cases will be added in follow on commits.
Note, the two llvm_unreachable() calls should now actually be unreachable
with the error checks in place and would take a logic bug in the error
checking code to be reached if the segment indexes and segment
offsets are used from a checked bind entry. Comments have been added
to the methods that require the arguments to have been checked
prior to calling.
llvm-svn: 298292
On Solaris ld (and some other tools that use the underlying utility
libraries, such as elfdump) chokes on an archive library that has no
symbol table. The Solaris tools always create one, even if it's empty.
That bug has been fixed in the latest development line, and can
probably be backported to a supported release, but it would be nice if
LLVM's archiver could emit the empty symbol table, too.
Patch by Danek Duvall!
llvm-svn: 297773
Summary:
In a .symver assembler directive like:
.symver name, name2@@nodename
"name2@@nodename" should get the same symbol binding as "name".
While the ELF object writer is updating the symbol binding for .symver
aliases before emitting the object file, not doing so when the module
inline assembly is handled by the RecordStreamer is causing the wrong
behavior in *LTO mode.
E.g. when "name" is global, "name2@@nodename" must also be marked as
global. Otherwise, the symbol is skipped when iterating over the LTO
InputFile symbols (InputFile::Symbol::shouldSkip). So, for example,
when performing any *LTO via the gold-plugin, the versioned symbol
definition is not recorded by the plugin and passed back to the
linker. If the object was in an archive, and there were no other symbols
needed from that object, the object would not be included in the final
link and references to the versioned symbol are undefined.
The llvm-lto2 tests added will give an error about an unused symbol
resolution without the fix.
Reviewers: rafael, pcc
Reviewed By: pcc
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D30485
llvm-svn: 297332
other tables. Providing a helpful error message to what the error is and
where the error occurred based on which opcode it was associated with.
There have been handful of bug fixes dealing with bad bind info in
object files, r294021 and r249845, which only put a band aid on the
problem after a bad bind table was created after unpacking from
its compact info. In these cases a bind table should have never been
created and an error should have simply been generated.
This change puts in place the plumbing to allow checking and returning
of an error when the compact info is unpacked. This follows the model
of iterators that can fail that Lang Hanes designed when fixing the problem
for bad archives r275316 (or r275361).
This change uses one of the existing test cases that now causes an
error instead of printing <<bad library ordinal>> after a bad bind table
is created. The error uses the offset into the opcode table as shown with
the macOS dyldinfo(1) tool to indicate where the error is and which
opcode and which parameter is in error.
For example the exiting test case has this lazy binding opcode table:
% dyldinfo -opcodes test/tools/llvm-objdump/Inputs/bad-ordinal.macho-x86_64
…
lazy binding opcodes:
0x0000 BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB(0x02, 0x00000010)
0x0002 BIND_OPCODE_SET_DYLIB_ORDINAL_IMM(2)
In the test case the binary only has one library so setting the library
ordinal to the value of 2 in the BIND_OPCODE_SET_DYLIB_ORDINAL_IMM
opcode at 0x0002 above is an error. This now produces this error message:
% llvm-objdump -lazy-bind bad-ordinal.macho-x86_64
…
llvm-objdump: 'bad-ordinal.macho-x86_64': truncated or malformed object (for BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB bad library ordinal: 2 (max 1) for opcode at: 0x2)
This change provides the plumbing for the error handling and one example
of an error message. Other error checks and test cases will be added in follow
on commits.
llvm-svn: 296527
For whatever reason ld64 requires that member headers (not the member
themselves) should be aligned. The only way to do that is to edit the
previous member so that it ends at an aligned boundary.
Since modifying data put in an archive is an undesirable property,
llvm-ar should only do it when it is absolutely necessary.
llvm-svn: 295765
in this case for CPU_SUBTYPE_ARM64_ALL.
For this cpusubtype it should default to a cyclone CPU
to give proper disassembly without a -mcpu= flag.
rdar://27767188
llvm-svn: 294771
This makes sure we get the same redefinition rules regardless of who
is printing (asm parser, codegen) and to what (asm, obj).
This fixes an unintentional regression in r293936.
llvm-svn: 294752
ld64 requires its archive members to be 8-byte aligned for 64-bit
content and 4-byte aligned for 32-bit content. Opt for the larger
alignment requirement. This ensures that ld64 can consume archives
generated by llvm-ar.
Thanks to Kevin Enderby for the hint about the ld64/cctools behaviours!
Resolves PR28361!
llvm-svn: 294615
Add a note about the reason for the divergence from the specification
for ld64. Addresses post-commit review comments from Davide. NFC.
llvm-svn: 294594
cctools would pad the string table to a sizeof(int32_t) (explicitly
printed out by cctools rather than 4). This adjusts the string table to
make it more compatible with cctools, but is insufficient to make ld64
happy.
llvm-svn: 294557
it was printing the field name fileoff instead of filesize. The original check
was added in r278557.
This was found in tracking down the problem that lead to the fix in
r293842 - [dsymutil] Fix __LINKEDIT vmsize in dsymutil upgrade path
rdar://30386075
llvm-svn: 294354
Create a WasmDumper subclass of ObjDumper to support Webassembly binary
files.
Patch by Sam Clegg
Differential Revision: https://reviews.llvm.org/D27355
llvm-svn: 293569
for CPU_SUBTYPE_ARM_V7S and CPU_SUBTYPE_ARM_V7K.
For these two cpusubtypes they should default to a cortex-a7 CPU
to give proper disassembly without a -mcpu= flag.
rdar://27431703
llvm-svn: 292993
in llvm-objdump for Mach-O files add the printing of the
x86_thread_state32_t in the same format as
otool-classic(1) on darwin.
To do this the 32-bit x86 general tread state
needed to be defined in include/llvm/Support/MachO.h .
rdar://30110111
llvm-svn: 292829
Summary:
Add a new load command LC_BUILD_VERSION. It is a generic version of
LC_*_VERSION_MIN load_command used on Apple platforms. Instead of having
a seperate load command for each platform, LC_BUILD_VERSION is recording
platform info as an enum. It also records SDK version, min_os, and tools
that used to build the binary.
rdar://problem/29781291
Reviewers: enderby
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29044
llvm-svn: 292824
It describes a region of arbitrary data included in a Mach-O file.
Its initial use is to record extra data in MH_CORE files.
rdar://30001545
rdar://30001731
llvm-svn: 292500
An ELFObjectFile can now create SubtargetFeatures from the available
ARM build attributes, in a similar manner to MIPS. I've moved the
MIPS code into its own function and the ARM handler also has a
separate function.
Differential Revision: https://reviews.llvm.org/D28291
llvm-svn: 292403
Enable an ELFObjectFile to read the its arm build attributes to
produce a target triple with a specific ARM architecture.
llvm-objdump now uses this functionality to automatically produce
a more accurate target.
Differential Revision: https://reviews.llvm.org/D28769
llvm-svn: 292366