Also it extracts getCopyFromRegs helper function in SelectionDAGBuilder as we need to be able to customize type of the register exported from basic block during lowering of the gc.result.
(Resubmitting this change after not being able to reproduce buildbot failure)
Differential Revision: http://reviews.llvm.org/D7760
llvm-svn: 231800
Also it extracts getCopyFromRegs helper function in SelectionDAGBuilder as we need to be able to customize type of the register exported from basic block during lowering of the gc.result.
llvm-svn: 231366
This is in preparation for a fix to llvm.org/PR22262. One of the ideas
here is to first find a good jump table range first and then split
before and after it. Thereby, we don't need to use the
split-based-on-density heuristic at all, which can make the "binary
tree" deteriorate in various cases.
Also some minor cleanups.
No functional changes.
llvm-svn: 226551
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
This adds handling for ExceptionHandling::MSVC, used by the
x86_64-pc-windows-msvc triple. It assumes that filter functions have
already been outlined in either the frontend or the backend. Filter
functions are used in place of the landingpad catch clause type info
operands. In catch clause order, the first filter to return true will
catch the exception.
The C specific handler table expects the landing pad to be split into
one block per handler, but LLVM IR uses a single landing pad for all
possible unwind actions. This patch papers over the mismatch by
synthesizing single instruction BBs for every catch clause to fill in
the EH selector that the landing pad block expects.
Missing functionality:
- Accessing data in the parent frame from outlined filters
- Cleanups (from __finally) are unsupported, as they will require
outlining and parent frame access
- Filter clauses are unsupported, as there's no clear analogue in SEH
In other words, this is the minimal set of changes needed to write IR to
catch arbitrary exceptions and resume normal execution.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6300
llvm-svn: 225904
While, generally speaking, the process of lowering arguments for a patchpoint
is the same as lowering a regular indirect call, on some targets it may not be
exactly the same. Targets may not, for example, want to add additional register
dependencies that apply only to making cross-DSO calls through linker stubs,
may not want to load additional registers out of function descriptors, and may
not want to add additional side-effect-causing instructions that cannot be
removed later with the call itself being generated.
The PowerPC target will use this in a future commit (for all of the reasons
stated above).
llvm-svn: 225806
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.
Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
llvm-svn: 223348
This is the third patch in a small series. It contains the CodeGen support for lowering the gc.statepoint intrinsic sequences (223078) to the STATEPOINT pseudo machine instruction (223085). The change also includes the set of helper routines and classes for working with gc.statepoints, gc.relocates, and gc.results since the lowering code uses them.
With this change, gc.statepoints should be functionally complete. The documentation will follow in the fourth change, and there will likely be some cleanup changes, but interested parties can start experimenting now.
I'm not particularly happy with the amount of code or complexity involved with the lowering step, but at least it's fairly well isolated. The statepoint lowering code is split into it's own files and anyone not working on the statepoint support itself should be able to ignore it.
During the lowering process, we currently spill aggressively to stack. This is not entirely ideal (and we have plans to do better), but it's functional, relatively straight forward, and matches closely the implementations of the patchpoint intrinsics. Most of the complexity comes from trying to keep relocated copies of values in the same stack slots across statepoints. Doing so avoids the insertion of pointless load and store instructions to reshuffle the stack. The current implementation isn't as effective as I'd like, but it is functional and 'good enough' for many common use cases.
In the long term, I'd like to figure out how to integrate the statepoint lowering with the register allocator. In principal, we shouldn't need to eagerly spill at all. The register allocator should do any spilling required and the statepoint should simply record that fact. Depending on how challenging that turns out to be, we may invest in a smarter global stack slot assignment mechanism as a stop gap measure.
Reviewed by: atrick, ributzka
llvm-svn: 223137
This commit fixes a bug in stack protector pass where edge weights were not set
when new basic blocks were added to lists of successor basic blocks.
Differential Revision: http://reviews.llvm.org/D5766
llvm-svn: 222987
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot. I'll respond to the commit on the
list with a reproduction of one of the failures.
Conflicts:
lib/Target/X86/X86TargetTransformInfo.cpp
llvm-svn: 222936
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
llvm-svn: 222632
This is in preparation for another patch that makes patchpoints invokable.
Reviewers: atrick, ributzka
Reviewed By: ributzka
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5657
llvm-svn: 219967
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
llvm-svn: 213967
buildbot - do not insert debug intrinsics before phi nodes.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207269
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207235
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
llvm-svn: 207165
Win64 stack unwinder gets confused when execution flow "falls through" after
a call to 'noreturn' function. This fixes the "missing epilogue" problem by
emitting a trap instruction for IR 'unreachable' on x86_x64-pc-windows.
A secondary use for it would be for anyone wanting to make double-sure that
'noreturn' functions, indeed, do not return.
llvm-svn: 206684
When converting from "or + br" to two branches, or converting from
"and + br" to two branches, we correctly update the edge weights of
the two branches.
The previous attempt at r200431 was reverted at r200434 because of
two testing case failures. I modified my patch a little, but forgot
to re-run "make check-all".
Testing case CodeGen/ARM/lsr-unfolded-offset.ll is updated because of
the patch's impact on branch probability which causes changes in
spill placement.
llvm-svn: 200502
When converting from "or + br" to two branches, or converting from
"and + br" to two branches, we correctly update the edge weights of
the two branches.
llvm-svn: 200431
The idea of the AnyReg Calling Convention is to provide the call arguments in
registers, but not to force them to be placed in a paticular order into a
specified set of registers. Instead it is up tp the register allocator to assign
any register as it sees fit. The same applies to the return value (if
applicable).
Differential Revision: http://llvm-reviews.chandlerc.com/D2009
Reviewed by Andy
llvm-svn: 194293
The work on this project was left in an unfinished and inconsistent state.
Hopefully someone will eventually get a chance to implement this feature, but
in the meantime, it is better to put things back the way the were. I have
left support in the bitcode reader to handle the case-range bitcode format,
so that we do not lose bitcode compatibility with the llvm 3.3 release.
This reverts the following commits: 155464, 156374, 156377, 156613, 156704,
156757, 156804 156808, 156985, 157046, 157112, 157183, 157315, 157384, 157575,
157576, 157586, 157612, 157810, 157814, 157815, 157880, 157881, 157882, 157884,
157887, 157901, 158979, 157987, 157989, 158986, 158997, 159076, 159101, 159100,
159200, 159201, 159207, 159527, 159532, 159540, 159583, 159618, 159658, 159659,
159660, 159661, 159703, 159704, 160076, 167356, 172025, 186736
llvm-svn: 190328
SystemZTargetLowering::emitStringWrapper() previously loaded the character
into R0 before the loop and made R0 live on entry. I'd forgotten that
allocatable registers weren't allowed to be live across blocks at this stage,
and it confused LiveVariables enough to cause a miscompilation of f3 in
memchr-02.ll.
This patch instead loads R0 in the loop and leaves LICM to hoist it
after RA. This is actually what I'd tried originally, but I went for
the manual optimisation after noticing that R0 often wasn't being hoisted.
This bug forced me to go back and look at why, now fixed as r188774.
We should also try to optimize null checks so that they test the CC result
of the SRST directly. The select between null and the SRST GPR result could
then usually be deleted as dead.
llvm-svn: 188779
Previously, generation of stack protectors was done exclusively in the
pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
splitting basic blocks at the IR level to create the success/failure basic
blocks in the tail of the basic block in question. As a result of this,
calls that would have qualified for the sibling call optimization were no
longer eligible for optimization since said calls were no longer right in
the "tail position" (i.e. the immediate predecessor of a ReturnInst
instruction).
Then it was noticed that since the sibling call optimization causes the
callee to reuse the caller's stack, if we could delay the generation of
the stack protector check until later in CodeGen after the sibling call
decision was made, we get both the tail call optimization and the stack
protector check!
A few goals in solving this problem were:
1. Preserve the architecture independence of stack protector generation.
2. Preserve the normal IR level stack protector check for platforms like
OpenBSD for which we support platform specific stack protector
generation.
The main problem that guided the present solution is that one can not
solve this problem in an architecture independent manner at the IR level
only. This is because:
1. The decision on whether or not to perform a sibling call on certain
platforms (for instance i386) requires lower level information
related to available registers that can not be known at the IR level.
2. Even if the previous point were not true, the decision on whether to
perform a tail call is done in LowerCallTo in SelectionDAG which
occurs after the Stack Protector Pass. As a result, one would need to
put the relevant callinst into the stack protector check success
basic block (where the return inst is placed) and then move it back
later at SelectionDAG/MI time before the stack protector check if the
tail call optimization failed. The MI level option was nixed
immediately since it would require platform specific pattern
matching. The SelectionDAG level option was nixed because
SelectionDAG only processes one IR level basic block at a time
implying one could not create a DAG Combine to move the callinst.
To get around this problem a few things were realized:
1. While one can not handle multiple IR level basic blocks at the
SelectionDAG Level, one can generate multiple machine basic blocks
for one IR level basic block. This is how we handle bit tests and
switches.
2. At the MI level, tail calls are represented via a special return
MIInst called "tcreturn". Thus if we know the basic block in which we
wish to insert the stack protector check, we get the correct behavior
by always inserting the stack protector check right before the return
statement. This is a "magical transformation" since no matter where
the stack protector check intrinsic is, we always insert the stack
protector check code at the end of the BB.
Given the aforementioned constraints, the following solution was devised:
1. On platforms that do not support SelectionDAG stack protector check
generation, allow for the normal IR level stack protector check
generation to continue.
2. On platforms that do support SelectionDAG stack protector check
generation:
a. Use the IR level stack protector pass to decide if a stack
protector is required/which BB we insert the stack protector check
in by reusing the logic already therein. If we wish to generate a
stack protector check in a basic block, we place a special IR
intrinsic called llvm.stackprotectorcheck right before the BB's
returninst or if there is a callinst that could potentially be
sibling call optimized, before the call inst.
b. Then when a BB with said intrinsic is processed, we codegen the BB
normally via SelectBasicBlock. In said process, when we visit the
stack protector check, we do not actually emit anything into the
BB. Instead, we just initialize the stack protector descriptor
class (which involves stashing information/creating the success
mbbb and the failure mbb if we have not created one for this
function yet) and export the guard variable that we are going to
compare.
c. After we finish selecting the basic block, in FinishBasicBlock if
the StackProtectorDescriptor attached to the SelectionDAGBuilder is
initialized, we first find a splice point in the parent basic block
before the terminator and then splice the terminator of said basic
block into the success basic block. Then we code-gen a new tail for
the parent basic block consisting of the two loads, the comparison,
and finally two branches to the success/failure basic blocks. We
conclude by code-gening the failure basic block if we have not
code-gened it already (all stack protector checks we generate in
the same function, use the same failure basic block).
llvm-svn: 188755
Generalize r188163 to cope with return types other than MVT::i32, just
as the existing visitMemCmpCall code did. I've split this out into a
subroutine so that it can be used for other upcoming patches.
I also noticed that I'd used the wrong API to record the out chain.
It's a load that uses DAG.getRoot() rather than getRoot(), so the out
chain should go on PendingLoads. I don't have a testcase for that because
we don't do any interesting scheduling on z yet.
llvm-svn: 188540
Use a field in the SelectionDAGNode object to track its IR ordering.
This adds fields and utility classes without changing existing
interfaces or functionality.
llvm-svn: 182701
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
the case of multiple edges from one block to another.
A simple example is a switch statement with multiple values to the same
destination. The definition of an edge is modified from a pair of blocks to
a pair of PredBlock and an index into the successors.
Also set the weight correctly when building SelectionDAG from LLVM IR,
especially when converting a Switch.
IntegersSubsetMapping is updated to calculate the weight for each cluster.
llvm-svn: 162572
SelectionDAG's 'init' has not been called when the SelectionDAGBuilder is
constructed (in SelectionDAGISel's constructor), so this was previously always
initialized with 0.
llvm-svn: 162333
This patch is mostly just refactoring a bunch of copy-and-pasted code, but
it also adds a check that the call instructions are readnone or readonly.
That check was already present for sin, cos, sqrt, log2, and exp2 calls, but
it was missing for the rest of the builtins being handled in this code.
llvm-svn: 161282
SelectionDAGBuilder::Clusterify : main functinality was replaced with CRSBuilder::optimize, so big part of Clusterify's code was reduced.
llvm-svn: 157046
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481
This implements the 'landingpad' instruction. It's used to indicate that a basic
block is a landing pad. There are several restrictions on its use (see
LangRef.html for more detail). These restrictions allow the exception handling
code to gather the information it needs in a much more sane way.
This patch has the definition, implementation, C interface, parsing, and bitcode
support in it.
llvm-svn: 137501
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
llvm-svn: 136589
'atomicrmw' instructions, which allow representing all the current atomic
rmw intrinsics.
The allowed operands for these instructions are heavily restricted at the
moment; we can probably loosen it a bit, but supporting general
first-class types (where it makes sense) might get a bit complicated,
given how SelectionDAG works.
As an initial cut, these operations do not support specifying an alignment,
but it would be possible to add if we think it's useful. Specifying an
alignment lower than the natural alignment would be essentially
impossible to support on anything other than x86, but specifying a greater
alignment would be possible. I can't think of any useful optimizations which
would use that information, but maybe someone else has ideas.
Optimizer/codegen support coming soon.
llvm-svn: 136404
We have to do this in DAGBuilder instead of DAGCombiner, because the exact bit is lost after building.
struct foo { char x[24]; };
long bar(struct foo *a, struct foo *b) { return a-b; }
is now compiled into
movl 4(%esp), %eax
subl 8(%esp), %eax
sarl $3, %eax
imull $-1431655765, %eax, %eax
instead of
movl 4(%esp), %eax
subl 8(%esp), %eax
movl $715827883, %ecx
imull %ecx
movl %edx, %eax
shrl $31, %eax
sarl $2, %edx
addl %eax, %edx
movl %edx, %eax
llvm-svn: 134695
BranchProbabilityInfo (expect setEdgeWeight which is not available here).
Branch Weights are kept in MachineBasicBlocks. To turn off this analysis
set -use-mbpi=false.
llvm-svn: 133184
It couldn't be used outside of the file because SDISelAsmOperandInfo
is local to SelectionDAGBuilder.cpp. Making it a static function avoids
a weird linkage dance.
llvm-svn: 128342
In other words, do not keep track of argument's location. The debugger (gdb) is not prepared to see line table entries for arguments. For the debugger, "second" line table entry marks beginning of function body.
This requires some coordination with debugger to get this working.
- The debugger needs to be aware of prolog_end attribute attached with line table entries.
- The compiler needs to accurately mark prolog_end in line table entries (at -O0 and at -O1+)
llvm-svn: 126155
edited during emission.
If the basic block ends in a switch that gets lowered to a jump table, any
phis at the default edge were getting updated wrong. The jump table data
structure keeps a pointer to the header blocks that wasn't getting updated
after the MBB is split.
This bug was exposed on 32-bit Linux when disabling critical edge splitting in
codegen prepare.
The fix is to uipdate stale MBB pointers whenever a block is split during
emission.
llvm-svn: 115191
occasions, caused code to be generated in a different order.
All cases I've seen involved float softening in the type
legalizer, and this could be perhaps be fixed there, but
it's better not to generate things differently in the first
place. 7797940 (6/29/2010..7/15/2010).
llvm-svn: 108484
the function. We'll just turn it into a "trap" instruction instead.
The problem with not handling this is that it might generate a prologue without
the equivalent epilogue to go with it:
$ cat t.ll
define void @foo() {
entry:
unreachable
}
$ llc -o - t.ll -relocation-model=pic -disable-fp-elim -unwind-tables
.section __TEXT,__text,regular,pure_instructions
.globl _foo
.align 4, 0x90
_foo: ## @foo
Leh_func_begin0:
## BB#0: ## %entry
pushq %rbp
Ltmp0:
movq %rsp, %rbp
Ltmp1:
Leh_func_end0:
...
The unwind tables then have bad data in them causing all sorts of problems.
Fixes <rdar://problem/8096481>.
llvm-svn: 108473
Split the code for materializing a value out of
SelectionDAGBuilder::getValue into a helper function, so that it can
be used in other ways. Add a new getNonRegisterValue function which
uses it, for use in code which doesn't want a CopyFromReg even
when FuncMap.ValueMap already has an entry for it.
llvm-svn: 106422
FunctionLoweringInfo, as it isn't SelectionDAG-specific. This isn't
completely natural, as PHI node state is not per-function but rather
per-basic-block, however there's currently no other convenient
per-basic-block state to group it with.
llvm-svn: 102109
const_casts, and it reinforces the design of the Target classes being
immutable.
SelectionDAGISel::IsLegalToFold is now a static member function, because
PIC16 uses it in an unconventional way. There is more room for API
cleanup here.
And PIC16's AsmPrinter no longer uses TargetLowering.
llvm-svn: 101635
"visit*" method is called, take the newly created nodes, walk them in a DFS
fashion, and if they don't have an ordering set, then give it one.
llvm-svn: 94757
SDISel. This optimization was causing simplifylibcalls to
introduce type-unsafe nastiness. This is the first step, I'll be
expanding the memcmp optimizations shortly, covering things that
we really really wouldn't want simplifylibcalls to do.
llvm-svn: 92098
return partial registers. This affected the back-end lowering code some.
Also patch up some places I missed before in the "get" functions.
llvm-svn: 91880
- Move DisableScheduling flag into TargetOption.h
- Move SDNodeOrdering into its own header file. Give it a minimal interface that
doesn't conflate construction with storage.
- Move assigning the ordering into the SelectionDAGBuilder.
This isn't used yet, so there should be no functional changes.
llvm-svn: 91727