Commit Graph

109 Commits

Author SHA1 Message Date
Chandler Carruth 363ac68374 [CallSite removal] Migrate all Alias Analysis APIs to use the newly
minted `CallBase` class instead of the `CallSite` wrapper.

This moves the largest interwoven collection of APIs that traffic in
`CallSite`s. While a handful of these could have been migrated with
a minorly more shallow migration by converting from a `CallSite` to
a `CallBase`, it hardly seemed worth it. Most of the APIs needed to
migrate together because of the complex interplay of AA APIs and the
fact that converting from a `CallBase` to a `CallSite` isn't free in its
current implementation.

Out of tree users of these APIs can fairly reliably migrate with some
combination of `.getInstruction()` on the `CallSite` instance and
casting the resulting pointer. The most generic form will look like `CS`
-> `cast_or_null<CallBase>(CS.getInstruction())` but in most cases there
is a more elegant migration. Hopefully, this migrates enough APIs for
users to fully move from `CallSite` to the base class. All of the
in-tree users were easily migrated in that fashion.

Thanks for the review from Saleem!

Differential Revision: https://reviews.llvm.org/D55641

llvm-svn: 350503
2019-01-07 05:42:51 +00:00
George Burgess IV 685e781d55 [AAEval] Use LocationSize instead of ints; NFC
Keeping these patches super small so they're easily post-commit
verifiable, as requested in D44748.

llvm-svn: 350014
2018-12-23 02:39:58 +00:00
George Burgess IV aa283d80fe [MSSA] Print more optimization information
In particular, when asked to print a MemoryAccess, we'll now print where
defs are optimized to, and we'll print optimized access types.

This patch also introduces an operator<< to make printing AliasResults
easier.

Patch by Juneyoung Lee!

Differential Revision: https://reviews.llvm.org/D47860

llvm-svn: 334760
2018-06-14 19:55:53 +00:00
Alina Sbirlea 50db8a2086 [ModRefInfo] Add must alias info to ModRefInfo.
Summary:
Add an additional bit to ModRefInfo, ModRefInfo::Must, to be cleared for known must aliases.
Shift existing Mod/Ref/ModRef values to include an additional most
significant bit. Update wrappers that modify ModRefInfo values to
reflect the change.

Notes:
* ModRefInfo::Must is almost entirely cleared in the AAResults methods, the remaining changes are trying to preserve it.
* Only some small changes to make custom AA passes set ModRefInfo::Must (BasicAA).
* GlobalsModRef already declares a bit, who's meaning overlaps with the most significant bit in ModRefInfo (MayReadAnyGlobal). No changes to shift the value of MayReadAnyGlobal (see AlignedMap). FunctionInfo.getModRef() ajusts most significant bit so correctness is preserved, but the Must info is lost.
* There are cases where the ModRefInfo::Must is not set, e.g. 2 calls that only read will return ModRefInfo::NoModRef, though they may read from exactly the same location.

Reviewers: dberlin, hfinkel, george.burgess.iv

Subscribers: llvm-commits, sanjoy

Differential Revision: https://reviews.llvm.org/D38862

llvm-svn: 321309
2017-12-21 21:41:53 +00:00
Alina Sbirlea 193429f0c8 [ModRefInfo] Make enum ModRefInfo an enum class [NFC].
Summary:
Make enum ModRefInfo an enum class. Changes to ModRefInfo values should
be done using inline wrappers.
This should prevent future bit-wise opearations from being added, which can be more error-prone.

Reviewers: sanjoy, dberlin, hfinkel, george.burgess.iv

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D40933

llvm-svn: 320107
2017-12-07 22:41:34 +00:00
Chandler Carruth 6bda14b313 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00
Sean Silva 36e0d01e13 Consistently use FunctionAnalysisManager
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278077
2016-08-09 00:28:15 +00:00
Benjamin Kramer aa2091505f Apply clang-tidy's modernize-loop-convert to lib/Analysis.
Only minor manual fixes. No functionality change intended.

llvm-svn: 273816
2016-06-26 17:27:42 +00:00
Chandler Carruth b47f8010a9 [PM] Make the AnalysisManager parameter to run methods a reference.
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.

In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.

llvm-svn: 263219
2016-03-11 11:05:24 +00:00
Chandler Carruth 4f846a5f15 [PM/AA] Port alias analysis evaluator to the new pass manager, and use
it to actually test the new pass manager AA wiring.

This patch was extracted from the (somewhat too large) D12357 and
rebosed on top of the slightly different design of the new pass manager
AA wiring that I just landed. With this we can start testing the AA in
a thorough way with the new pass manager.

Some minor cleanups to the code in the pass was necessitated here, but
otherwise it is a very minimal change.

Differential Revision: http://reviews.llvm.org/D17372

llvm-svn: 261403
2016-02-20 03:46:03 +00:00
David Majnemer 2bc2538470 [OperandBundles] Have GlobalsModRef play nice with operand bundles
A call site's use of a Value might not correspond to an argument
operand but to a bundle operand.

llvm-svn: 256329
2015-12-23 09:58:46 +00:00
Rafael Espindola 55512f9b25 Default SetVector to use a DenseSet.
We use to have an odd difference among MapVector and SetVector. The map
used a DenseMop, but the set used a SmallSet, which in turn uses a
std::set.

I have changed SetVector to use a DenseSet. If you were depending on the
old behaviour you can pass an explicit set type or use SmallSetVector.
The common cases for needing to do it are:

* Optimizing for small sets.
* Sets for types not supported by DenseSet.

llvm-svn: 253439
2015-11-18 06:52:18 +00:00
Duncan P. N. Exon Smith 5a82c916b0 Analysis: Remove implicit ilist iterator conversions
Remove implicit ilist iterator conversions from LLVMAnalysis.

I came across something really scary in `llvm::isKnownNotFullPoison()`
which relied on `Instruction::getNextNode()` being completely broken
(not surprising, but scary nevertheless).  This function is documented
(and coded to) return `nullptr` when it gets to the sentinel, but with
an `ilist_half_node` as a sentinel, the sentinel check looks into some
other memory and we don't recognize we've hit the end.

Rooting out these scary cases is the reason I'm removing the implicit
conversions before doing anything else with `ilist`; I'm not at all
surprised that clients rely on badness.

I found another scary case -- this time, not relying on badness, just
bad (but I guess getting lucky so far) -- in
`ObjectSizeOffsetEvaluator::compute_()`.  Here, we save out the
insertion point, do some things, and then restore it.  Previously, we
let the iterator auto-convert to `Instruction*`, and then set it back
using the `Instruction*` version:

    Instruction *PrevInsertPoint = Builder.GetInsertPoint();

    /* Logic that may change insert point */

    if (PrevInsertPoint)
      Builder.SetInsertPoint(PrevInsertPoint);

The check for `PrevInsertPoint` doesn't protect correctly against bad
accesses.  If the insertion point has been set to the end of a basic
block (i.e., `SetInsertPoint(SomeBB)`), then `GetInsertPoint()` returns
an iterator pointing at the list sentinel.  The version of
`SetInsertPoint()` that's getting called will then call
`PrevInsertPoint->getParent()`, which explodes horribly.  The only
reason this hasn't blown up is that it's fairly unlikely the builder is
adding to the end of the block; usually, we're adding instructions
somewhere before the terminator.

llvm-svn: 249925
2015-10-10 00:53:03 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Chandler Carruth 50fee93926 [PM/AA] Simplify the AliasAnalysis interface by removing a wrapper
around a DataLayout interface in favor of directly querying DataLayout.

This wrapper specifically helped handle the case where this no
DataLayout, but LLVM now requires it simplifynig all of this. I've
updated callers to directly query DataLayout. This in turn exposed
a bunch of places where we should have DataLayout readily available but
don't which I've fixed. This then in turn exposed that we were passing
DataLayout around in a bunch of arguments rather than making it readily
available so I've also fixed that.

No functionality changed.

llvm-svn: 244189
2015-08-06 02:05:46 +00:00
Chandler Carruth 194f59ca5d [PM/AA] Extract the ModRef enums from the AliasAnalysis class in
preparation for de-coupling the AA implementations.

In order to do this, they had to become fake-scoped using the
traditional LLVM pattern of a leading initialism. These can't be actual
scoped enumerations because they're bitfields and thus inherently we use
them as integers.

I've also renamed the behavior enums that are specific to reasoning
about the mod/ref behavior of functions when called. This makes it more
clear that they have a very narrow domain of applicability.

I think there is a significantly cleaner API for all of this, but
I don't want to try to do really substantive changes for now, I just
want to refactor the things away from analysis groups so I'm preserving
the exact original design and just cleaning up the names, style, and
lifting out of the class.

Differential Revision: http://reviews.llvm.org/D10564

llvm-svn: 242963
2015-07-22 23:15:57 +00:00
Alexander Kornienko f00654e31b Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)
Apparently, the style needs to be agreed upon first.

llvm-svn: 240390
2015-06-23 09:49:53 +00:00
Chandler Carruth c3f49eb451 [PM/AA] Hoist the AliasResult enum out of the AliasAnalysis class.
This will allow classes to implement the AA interface without deriving
from the class or referencing an internal enum of some other class as
their return types.

Also, to a pretty fundamental extent, concepts such as 'NoAlias',
'MayAlias', and 'MustAlias' are first class concepts in LLVM and we
aren't saving anything by scoping them heavily.

My mild preference would have been to use a scoped enum, but that
feature is essentially completely broken AFAICT. I'm extremely
disappointed. For example, we cannot through any reasonable[1] means
construct an enum class (or analog) which has scoped names but converts
to a boolean in order to test for the possibility of aliasing.

[1]: Richard Smith came up with a "solution", but it requires class
templates, and lots of boilerplate setting up the enumeration multiple
times. Something like Boost.PP could potentially bundle this up, but
even that would be quite painful and it doesn't seem realistically worth
it. The enum class solution would probably work without the need for
a bool conversion.

Differential Revision: http://reviews.llvm.org/D10495

llvm-svn: 240255
2015-06-22 02:16:51 +00:00
Alexander Kornienko 70bc5f1398 Fixed/added namespace ending comments using clang-tidy. NFC
The patch is generated using this command:

tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
  -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
  llvm/lib/


Thanks to Eugene Kosov for the original patch!

llvm-svn: 240137
2015-06-19 15:57:42 +00:00
Chandler Carruth d1a130c202 [PM/AA] Suffix lots of member variables that directly use enumeration
names for counts with the word 'Count' to make them less ambiguous.

This will be an actual error if we use unscoped enums for any of these,
and generally this seems much clearer to read.

Also, use clang-format to normalize the formatting of this code which
seems to have been needlessly odd.

No functionality changed here.

llvm-svn: 239887
2015-06-17 07:21:41 +00:00
Chandler Carruth ecbd16829a [PM/AA] Remove the UnknownSize static member from AliasAnalysis.
This is now living in MemoryLocation, which is what it pertains to. It
is also an enum there rather than a static data member which is left
never defined.

llvm-svn: 239886
2015-06-17 07:21:38 +00:00
Chandler Carruth 70c61c1a8a [PM/AA] Start refactoring AliasAnalysis to remove the analysis group and
port it to the new pass manager.

All this does is extract the inner "location" class used by AA into its
own full fledged type. This seems *much* cleaner as MemoryDependence and
soon MemorySSA also use this heavily, and it doesn't make much sense
being inside the AA infrastructure.

This will also make it much easier to break apart the AA infrastructure
into something that stands on its own rather than using the analysis
group design.

There are a few places where this makes APIs not make sense -- they were
taking an AliasAnalysis pointer just to build locations. I'll try to
clean those up in follow-up commits.

Differential Revision: http://reviews.llvm.org/D10228

llvm-svn: 239003
2015-06-04 02:03:15 +00:00
Benjamin Kramer 3a09ef64ee [CallSite] Make construction from Value* (or Instruction*) explicit.
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.

Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this: 
  if (auto CS = CallSite(V)) // think dyn_cast
instead of:
  if (CallSite CS = V)

This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.

llvm-svn: 234601
2015-04-10 14:50:08 +00:00
Hal Finkel cc39b67530 AA metadata refactoring (introduce AAMDNodes)
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).

This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.

No functionality change intended.

llvm-svn: 213859
2014-07-24 12:16:19 +00:00
Craig Topper e9ba759c81 [C++11] Add 'override' keyword to virtual methods that override their base class.
llvm-svn: 202945
2014-03-05 07:30:04 +00:00
Chandler Carruth 8394857f43 [Modules] Move InstIterator out of the Support library, where it had no
business.

This header includes Function and BasicBlock and directly uses the
interfaces of both classes. It has to do with the IR, it even has that
in the name. =] Put it in the library it belongs to.

This is one step toward making LLVM's Support library survive a C++
modules bootstrap.

llvm-svn: 202814
2014-03-04 10:30:26 +00:00
Chandler Carruth d48cdbf0c3 Put the functionality for printing a value to a raw_ostream as an
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.

This removes the 'Writer.h' header which contained only a single function
declaration.

llvm-svn: 198836
2014-01-09 02:29:41 +00:00
Chandler Carruth 9aca918df9 Move the LLVM IR asm writer header files into the IR directory, as they
are part of the core IR library in order to support dumping and other
basic functionality.

Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.

Update all of the #includes to match.

All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.

llvm-svn: 198688
2014-01-07 12:34:26 +00:00
Manman Ren 0827e97700 Support in AAEvaluator to print alias queries of loads/stores with TBAA tags.
Add "evaluate-tbaa" to print alias queries of loads/stores. Alias queries
between pointers do not include TBAA tags.

Add testing case for "placement new". TBAA currently says NoAlias.

llvm-svn: 177772
2013-03-22 22:34:41 +00:00
Chandler Carruth 9fb823bbd4 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

llvm-svn: 171366
2013-01-02 11:36:10 +00:00
Chandler Carruth ed0881b2a6 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

llvm-svn: 169131
2012-12-03 16:50:05 +00:00
David Blaikie edbb58c577 Remove unnecessary default cases in switches that cover all enum values.
llvm-svn: 147855
2012-01-10 16:47:17 +00:00
Chris Lattner 229907cd11 land David Blaikie's patch to de-constify Type, with a few tweaks.
llvm-svn: 135375
2011-07-18 04:54:35 +00:00
Dan Gohman 105d60a5ef Teach AliasAnalysisEvaluator about PartialAlias.
llvm-svn: 121512
2010-12-10 19:52:40 +00:00
Dan Gohman f372cf869b Reapply r116831 and r116839, converting AliasAnalysis to use
uint64_t, plus fixes for places I missed before.

llvm-svn: 116875
2010-10-19 22:54:46 +00:00
Dan Gohman b4aa503501 Revert r116831 and r116839, which are breaking selfhost builds.
llvm-svn: 116858
2010-10-19 21:06:16 +00:00
Dan Gohman f4c5fe73be Change AliasAnalysis and its clients to use uint64_t instead of unsigned
for representing object sizes, for consistency with other parts of LLVM.

llvm-svn: 116831
2010-10-19 18:00:02 +00:00
Owen Anderson 6c18d1aac0 Get rid of static constructors for pass registration. Instead, every pass exposes an initializeMyPassFunction(), which
must be called in the pass's constructor.  This function uses static dependency declarations to recursively initialize
the pass's dependencies.

Clients that only create passes through the createFooPass() APIs will require no changes.  Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.

I have tested this with all standard configurations of clang and llvm-gcc on Darwin.  It is possible that there are problems
with the static dependencies that will only be visible with non-standard options.  If you encounter any crash in pass
registration/creation, please send the testcase to me directly.

llvm-svn: 116820
2010-10-19 17:21:58 +00:00
Dan Gohman 14fe8cf238 Consistently use AliasAnalysis::UnknownSize instead of hardcoding ~0u.
llvm-svn: 116815
2010-10-19 17:06:23 +00:00
Owen Anderson 8ac477ffb5 Begin adding static dependence information to passes, which will allow us to
perform initialization without static constructors AND without explicit initialization
by the client.  For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve.  I hope to be able to relax
the latter requirement in the future.

llvm-svn: 116334
2010-10-12 19:48:12 +00:00
Owen Anderson df7a4f2515 Now with fewer extraneous semicolons!
llvm-svn: 115996
2010-10-07 22:25:06 +00:00
Owen Anderson a7aed18624 Reapply r110396, with fixes to appease the Linux buildbot gods.
llvm-svn: 110460
2010-08-06 18:33:48 +00:00
Owen Anderson bda59bd247 Revert r110396 to fix buildbots.
llvm-svn: 110410
2010-08-06 00:23:35 +00:00
Owen Anderson 755aceb5d0 Don't use PassInfo* as a type identifier for passes. Instead, use the address of the static
ID member as the sole unique type identifier.  Clean up APIs related to this change.

llvm-svn: 110396
2010-08-05 23:42:04 +00:00
Dan Gohman 109561845b The trouble with testing for "ModRef" and "NoModRef" is that
one is a suffix of the other, and FileCheck accepts superstrings.
Adjust the output to avoid this problem.

llvm-svn: 110280
2010-08-04 23:37:55 +00:00
Dan Gohman bd33dab633 The two-callsite form of AliasAnalysis::getModRefInfo is documented
to return Ref if the left callsite only reads memory read or written
by the right callsite; fix BasicAliasAnalysis to implement this.

Add AliasAnalysisEvaluator support for testing the two-callsite
form of getModRefInfo.

llvm-svn: 110270
2010-08-04 22:56:29 +00:00
Gabor Greif e497e5ef46 simplify
llvm-svn: 109585
2010-07-28 15:31:37 +00:00
Owen Anderson a57b97e7e7 Fix batch of converting RegisterPass<> to INTIALIZE_PASS().
llvm-svn: 109045
2010-07-21 22:09:45 +00:00
Dan Gohman 00ef93258a Remove interprocedural-basic-aa and associated code. The AliasAnalysis
interface needs implementations to be consistent, so any code which
wants to support different semantics must use a different interface.
It's not currently worthwhile to add a new interface for this new
concept.

Document that AliasAnalysis doesn't support cross-function queries.

llvm-svn: 107776
2010-07-07 14:27:09 +00:00
Dan Gohman 875a296011 Generalize AAEval so that it can be used both per-function and
interprocedurally. Note that as of this writing, existing alias
analysis passes are not prepared to be used interprocedurally.

llvm-svn: 107013
2010-06-28 16:01:37 +00:00