Objects that are storage associated by EQUIVALENCE and
initialized with DATA are initialized by creating a
compiler temporary data object in the same scope,
assigning it an offset, type, and size that covers the
transitive closure of the associated initialized original
symbols, and combining their initializers into one common
initializer for the temporary.
Some problems with offset assignment of EQUIVALENCE'd objects
in COMMON were exposed and corrected, and some more error
cases are checked.
Remove obsolete function.
Small bugfix (nested implied dos).
Add a test.
Fix struct/class warning.
Differential Revision: https://reviews.llvm.org/D85560
As pointed out in D85387, part of the comment for MapDynamicShadow
refactored to sanitizer_common in D83247 was incorrect for non-Linux
versions. Update the comment to reflect that.
Implement the Reduction Tree Pass framework as part of the MLIR Reduce tool. This is a parametarizable pass that allows for the implementation of custom reductions passes in the tool.
Implement the FunctionReducer class as an example of a Reducer class parameter for the instantiation of a Reduction Tree Pass.
Create a pass pipeline with a Reduction Tree Pass with the FunctionReducer class specified as parameter.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D83969
This also beefs up the test coverage:
- Make unranked memref testing consistent with ranked memrefs.
- Add testing for the invalid element type cases.
This is not quite NFC: index types are now allowed in unranked memrefs.
Differential Revision: https://reviews.llvm.org/D85541
If OptNoneInstrumentation prints it instead, 'Skipping pass' will print for even required passes.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D85493
Add support for `-D` and `-U` options for llvm-libtool-darwin. `-D`
allows for using zero for timestamps and UIDs/GIDs. `-U` allows for
using actual timestamps and UIDs/GIDs.
Reviewed by jhenderson, smeenai
Differential Revision: https://reviews.llvm.org/D84209
Add support for `-filelist` option for llvm-libtool-darwin. `-filelist`
option allows for passing in a file containing a list of filenames.
Reviewed by jhenderson, smeenai
Differential Revision: https://reviews.llvm.org/D84206
Add support for constant MachO::CPU_SUBTYPE_ARM64_V8. This constant is
needed so as to match `llvm-libtool-darwin`'s behavior to that of
cctools' libtool when `-arch_only` flag is passed in on command line.
Reviewed by jhenderson, alexshap, smeenai
Differential Revision: https://reviews.llvm.org/D85041
This simple patch translates the num_threads and if clauses of the parallel
operation. Also includes test cases.
A minor change was made to parsing of the if clause to parse AnyType and
return the parsed type. Updates to test cases also.
Reviewed by: SouraVX
Differential Revision: https://reviews.llvm.org/D84798
The test file is the single longest test among clang's tests and ends up about
doubling the wall time of clang tests on machines with high number of cores.
The test appears to consist of multiple independent subtests and does not have
to be in one file. Splitting it into smaller parts reduces test time on my
machine from ~80s down to ~45.
Differential Revision: https://reviews.llvm.org/D85551
Add symlinks for `llvm-libtool-darwin` and
`llvm-install-name-tool`.
Reviewed by jhenderson, smeenai
Differential Revision: https://reviews.llvm.org/D85054
This revision refactors the default definition of the attribute and type `classof` methods to use the TypeID of the concrete class instead of invoking the `kindof` method. The TypeID is already used as part of uniquing, and this allows for removing the need for users to define any of the type casting utilities themselves.
Differential Revision: https://reviews.llvm.org/D85356
Subclass data is useful when a certain amount of memory is allocated, but not all of it is used. In the case of Type, that hasn't been the case for a while and the subclass is just taking up a full `unsigned`. Removing this frees up ~8 bytes for almost every type instance.
Differential Revision: https://reviews.llvm.org/D85348
This class allows for defining thread local objects that have a set non-static lifetime. This internals of the cache use a static thread_local map between the various different non-static objects and the desired value type. When a non-static object destructs, it simply nulls out the entry in the static map. This will leave an entry in the map, but erase any of the data for the associated value. The current use cases for this are in the MLIRContext, meaning that the number of items in the static map is ~1-2 which aren't particularly costly enough to warrant the complexity of pruning. If a use case arises that requires pruning of the map, the functionality can be added.
This is especially useful in the context of MLIR for implementing thread-local caching of context level objects that would otherwise have very high lock contention. This revision adds a thread local cache in the MLIRContext for attributes, identifiers, and types to reduce some of the locking burden. This led to a speedup of several hundred miliseconds when compiling a conversion pass on a very large mlir module(>300K operations).
Differential Revision: https://reviews.llvm.org/D82597
This allows for bucketing the different possible storage types, with each bucket having its own allocator/mutex/instance map. This greatly reduces the amount of lock contention when multi-threading is enabled. On some non-trivial .mlir modules (>300K operations), this led to a compile time decrease of a single conversion pass by around half a second(>25%).
Differential Revision: https://reviews.llvm.org/D82596
We've been seeing this failure on green dragon when the system is
under high load. Unfortunately this is outside of LLDB's control.
Differential Revision: https://reviews.llvm.org/D85542
This diff adds documentation for `allow-empty` flag under FileCheck
docs.
Reviewed by jhenderson, smeenai, thopre
Differential Revision: https://reviews.llvm.org/D83682
Add support for OutputDescriptor() and InputDescriptor()
in the I/O runtime. Change existing scalar formatted I/O
functions to drive descriptor-based I/O routines internally.
Differential Revision: https://reviews.llvm.org/D85491
This change adds initial support needed to generate OpenCL compliant SPIRV.
If Kernel capability is declared then memory model becomes OpenCL.
If Addresses capability is declared then addressing model becomes Physical64.
Additionally for Kernel capability interface variable ABI attributes are not
generated as entry point function is expected to have normal arguments.
Differential Revision: https://reviews.llvm.org/D85196
The history of dropTriviallyDeadConstantArrays is like this. Because the appending linkage uses too much memory (http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20150105/251381.html), dropTriviallyDeadConstantArrays was introduced (https://reviews.llvm.org/rG81f385b0c6ea37dd7195a65be162c75bbdef29d2) to release unused constant arrays. Recently, dropTriviallyDeadConstantArrays was improved (https://reviews.llvm.org/rG81f385b0c6ea37dd7195a65be162c75bbdef29d2) to reduce its quadratic cost.
Our recent LTO profiling shows that when a target is large, 15-20% of time cost is from the SetVector::insert called by dropTriviallyDeadConstantArrays.
A large application has hundreds or thousands of modules; each module calls dropTriviallyDeadConstantArrays once for cleaning up tens of thousands of ConstantArrays a module has. In those ConstantArrays, usually around 5 can be deleted; a very very few deleted ConstantArrays reference other ConstantArrays: less than 10 out of millions.
Given this, the cost of SetVector::insert is mainly from the construction of WorkList from ArrayConstants. This motivated the fix that iterates ArrayConstants directly, and uses WorkList only when necessary.
Our evaluation shows that
1) The cumulative time percentage of dropTriviallyDeadConstantArrays is reduced from 15-17% to 4-6%.
2) For targets with LTO time > 20min, the time reduction is about 20%.
3) No observable performance impact for build without using LTO.
{F12506218}
{F12506221}
Reviewed By: mehdi_amini, tejohnson, jdoerfert
Differential Revision: https://reviews.llvm.org/D85379
This revision adds a folding pattern to replace affine.min ops by the actual min value, when it can be determined statically from the strides and bounds of enclosing scf loop .
This matches the type of expressions that Linalg produces during tiling and simplifies boundary checks. For now Linalg depends both on Affine and SCF but they do not depend on each other, so the pattern is added there.
In the future this will move to a more appropriate place when it is determined.
The canonicalization of AffineMinOp operations in the context of enclosing scf.for and scf.parallel proceeds by:
1. building an affine map where uses of the induction variable of a loop
are replaced by `%lb + %step * floordiv(%iv - %lb, %step)` expressions.
2. checking if any of the results of this affine map divides all the other
results (in which case it is also guaranteed to be the min).
3. replacing the AffineMinOp by the result of (2).
The algorithm is functional in simple parametric tiling cases by using semi-affine maps. However simplifications of such semi-affine maps are not yet available and the canonicalization does not succeed yet.
Differential Revision: https://reviews.llvm.org/D82009