"Does the predicate hold between two ranges?"
Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
"Does the predicate hold between two ranges?"
Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
We have this logic duplicated in several cases, none of which were exhaustive. Consolidate it in one place.
I don't believe this actually impacts behavior of the callers. I think they all filter their inputs such that their partial implementations were correct. If not, this might be fixing a cornercase bug.
This patch is plumbing to support work towards the goal outlined in the recent llvm-dev post "[llvm-dev] RFC: Decomposing deref(N) into deref(N) + nofree".
The point of this change is purely to simplify iteration on other pieces on way to making the switch. Rebuilding with a change to Value.h is slow and painful, so I want to get the API change landed. Once that's done, I plan to more closely audit each caller, add the inference rules in their own patch, then post a patch with the langref changes and test diffs. The value of the command line flag is that we can exercise the inference logic in standalone patches without needing the whole switch ready to go just yet.
Differential Revision: https://reviews.llvm.org/D98908
Since D86233 we have `mustprogress` which, in combination with
`readonly`, implies `willreturn`. The idea is that every side-effect
has to be modeled as a "write". Consequently, `readonly` means there
is no side-effect, and `mustprogress` guarantees that we cannot "loop"
forever without side-effect.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94125
Splitting this out as the change is non-trivial: The way this code
handled pointer types doesn't really make sense, as GEPs can only
apply an offset to the outermost pointer, but can't drill down
into interior pointer types (which would require dereferencing
memory).
Instead give special treatment to the first (pointer) index.
I've hardcoded it to zero as that's the only way the function is
used right now, but handling non-zero indexes would be
straightforward.
The original goal here was to have an element type for CreateGEP.
This patch makes uses of the context bridges introduced in D83299 to make
AAValueConstantRange call site specific.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D83744
We don't need a bool and an enum to express the three options we
currently have. This makes the interface nicer and much easier to
use optional dependencies. Also avoids mistakes where the bool is
false and enum ignored.
1. Removed #include "...AliasAnalysis.h" in other headers and modules.
2. Cleaned up includes in AliasAnalysis.h.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92489
When we promote pointer arguments we did compute a wrong offset and use
a wrong type for the array case.
Bug reported and reduced by Whitney Tsang <whitneyt@ca.ibm.com>.
If we are looking at a call site argument it might be a load or call
which is in a different context than the call site argument. We cannot
simply use the call site argument range for the call or load.
Bug reported and reduced by Whitney Tsang <whitneyt@ca.ibm.com>.
In the AANoAlias logic we determine if a pointer may have been captured
before a call. We need to look at other uses in the call not uses of the
call.
The new code is not perfect as it does not allow trivial cases where the
call has multiple arguments but it is at least not unsound and a TODO
was added.
The old function attribute deduction pass ignores reads of constant
memory and we need to copy this behavior to replace the pass completely.
First step are constant globals. TBAA can also describe constant
accesses and there are other possibilities. We might want to consider
asking the alias analyses that are available but for now this is simpler
and cheaper.
If the function is not assumed `noreturn` we should not wait for an
update to mark the call site as "may-return".
This has two kinds of consequences:
- We have less iterations in many tests.
- We have less deductions based on "known information" (since we ask
earlier, point 1, and therefore assumed information is not "known"
yet).
The latter is an artifact that we might want to tackle properly at some
point but which is not easily fixable right now.
When we assume a return value is dead we might still visit return
instructions via `Attributor::checkForAllReturnedValuesAndReturnInsts(..)`.
When we do so the "returned value" is potentially simplified to `undef`
as it is the assumed "returned value". This is a problem if there was a
preexisting `noundef` attribute that will only be removed as we manifest
the `undef` return value. We should not use this combination to derive
`unreachable` though. Two test cases fixed.
In AAMemoryBehaviorFloating we used to track benign uses in a SetVector.
With this change we look through benign uses eagerly to reduce the
number of elements (=Uses) we look at during an update.
The test does actually not fail prior to this commit but I already wrote
it so I kept it.
Require CxtI in getConstant() and getConstantRange() APIs.
Accordingly drop the BB parameter, as it is implied by
CxtI->getParent().
This makes sure we don't forget to pass the context instruction,
and makes the API contract clearer (also clean up the comments to
that effect -- the value holds at the context instruction, not
the end of the block).
This commit cleans up the ::initialize method of various AAs in the
following ways:
- If an associated function is required, give up on declarations.
This was discovered as a real problem when lots of llvm.dbg.XXX
call sites were assumed `noreturn` until proven otherwise. That
does not make any sense and caused huge regressions and missed
deductions.
- Require more associated declarations for function interface AAs.
- Use the IRAttribute::initialize to determine if function interface
AAs can be used in IPO, don't replicate the checks (especially
isFunctionIPOAmendable) all over the place. Arguably the function
declaration check should be moved to some central place to.
If we have a callback, call site arguments were already associated with
the callback callee. Now we also associate the function with the
callback callee, thus we know ensure that the following holds true (if
all return nonnull):
`getAssociatedArgument()->getParent() == getAssociatedFunction()`
To test this an early exit from
`AAMemoryBehaviorCallSiteArgument::initialize``
is included as well. Without the change to getAssociatedFunction() this
kind of early exit for declarations would cause callback call site
arguments to miss out.
As we handle callback calls we need to disambiguate the call site
argument number from the callee argument number. While always equal in
non-callback calls, a callback comes with a partial parameter-argument
mapping so there is no implicit correspondence. Here we split
`IRPosition::getArgNo()` into two public functions, `getCallSiteArgNo()`
and `getCalleeArgNo()`. Usages are adjusted to pick the right one for
their purpose. This fixed some problems that would have been exposed as
we more aggressively optimize callbacks.
This patch makes it possible for AAUB to use information from AANoUndef.
This is the next patch of D86983
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86984
When the associated value is undef, we immediately forced to indicate a pessimistic fixpoint so far.
This patch changes the initialization to check the attribute given in IR at first and to indicate an optimistic fixpoint when it is given.
This change will enable us to catch , for example, the following case in AAUB.
```
call void @foo(i32 noundef undef)
```
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86983
Summary:
The module slice describes which functions we can analyze and transform
while working on an SCC as part of the Attributor-CGSCC pass. So far we
simply restricted it to the SCC.
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D86319
This is the next patch of D86842
When we check `noundef` attribute violation at callsites, we do not have to require `nonnull` in the following two cases.
1. An argument is known to be simplified to undef
2. An argument is known to be dead
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86845
This patch fixes AANoUndef manifestation.
We should not manifest noundef for positions that will be changed to undef.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86835
Even if noundef is deduced for a position, we should not manifest it when the position is dead.
This is because the associated values with dead positions are replaced with undef values by AAIsDead.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86565
Currently, an undef value is reduced to 0 when it is added to a set of potential values.
This patch introduces a flag for under values. By this, for example, we can merge two states `{undef}`, `{1}` to `{1}` (because we can reduce the undef to 1).
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85592
This patch produces an edge-based interface in AAIsDead.
By this, we can query a set of basic blocks that are directly reachable from a given basic block.
This is specifically useful for implementation of AAReachability.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85547
Currently, `AANoUndefImpl::initialize` mistakenly always indicates optimistic fixpoint for function returned position.
This is because an associated value is `Function` in the case, and `isGuaranteedNotToBeUndefOrPoison` returns true for Function.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86361
Currently, although we handle `CallBase` case in updateImpl, we give up in initialize in the case.
That is problematic when we propagate a range from call site returned position to floating position.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86196