Take 2, with missing cmake line fixed. Build tested on
Ubuntu 14.04 with clang-3.6.
See docs/structured_data/StructuredDataPlugins.md for details.
differential review: https://reviews.llvm.org/D22976
reviewers: clayborg, jingham
llvm-svn: 279202
for the fall (northern hemisphere) 2016 Darwin platforms to learn
about loaded images, instead of reading dyld internal data structures.
These new SPI don't exist on older releases, and new packets are
needed from debugserver to use them (those changes are already committed).
I had to change the minimum deployment target for debugserver in the xcode
project file to macOS 10.10 so that debugserver will use the
[[NSProcessInfo processInfo] operatingSystemVersion]
call in MachProcess::GetOSVersionNumbers to get the operarting system
version # -- this API is only available in macOS 10.10 and newer
("OS X Yosemite", released Oct 2014). If we have many people building
llvm.org lldb on older systems still, we can back off on this for the
llvm.org sources.
There should be no change in behavior with this commit, either to
older darwin systems or newer darwin systems.
For now the new DynamicLoader plugin is never activated - I'm forcing
the old plugin to be used in DynamicLoaderDarwin::UseDYLDSPI.
I'll remove that unconditional use of the old plugin soon, so the
newer plugin is used on the newest Darwin platforms.
<rdar://problem/25251243>
llvm-svn: 276254
which doesn't like against all the extra UI frameworks on ios)
so it now generates a binary called "debugserver-nonui" and puts
it in /usr/local/bin instead of /Developer/usr/bin.
Add some cruft to RNBDefs.h to get the version number (provided
by Xcode at build time) with either the name "debugserver" or
"debugserver_nonui" as appropriate.
Add the "debugserver-mini" target to the top level "ios" target
in lldb xcode project file, so this nonui debugserver will be
built along with the normal lldb / debugserver.
<rdar://problem/24730789>
llvm-svn: 273236
previous release. Most of the diffs are duplication in the xcode
project file caused by adding a "debugserver-mini" target. Jim
Ingham added support for a new SPI needed to request app launches
on iOS. Greg Clayton added code to indicate the platform of the
binary (macosx, ios, watchos, tvos) based on Mach-O load commands.
Jason Molenda added code so debugserver will identify when it is
running on a tvos/watchos device to lldb.
llvm-svn: 251091
Summary:
This was no longer needed and hasn't been needed since r143244
in 2011. This removes everything associated with generating
or using it.
Reviewers: clayborg, jasonmolenda
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11971
llvm-svn: 244850
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
We have been working on reducing the packet count that is sent between LLDB and the debugserver on MacOSX and iOS. Our approach to this was to reduce the packets required when debugging multiple threads. We currently make one qThreadStopInfoXXXX call (where XXXX is the thread ID in hex) per thread except the thread that stopped with a stop reply packet. In order to implement multiple thread infos in a single reply, we need to use structured data, which means JSON. The new jThreadsInfo packet will attempt to retrieve all thread infos in a single packet. The data is very similar to the stop reply packets, but packaged in JSON and uses JSON arrays where applicable. The JSON output looks like:
[
{ "tid":1580681,
"metype":6,
"medata":[2,0],
"reason":"exception",
"qaddr":140735118423168,
"registers": {
"0":"8000000000000000",
"1":"0000000000000000",
"2":"20fabf5fff7f0000",
"3":"e8f8bf5fff7f0000",
"4":"0100000000000000",
"5":"d8f8bf5fff7f0000",
"6":"b0f8bf5fff7f0000",
"7":"20f4bf5fff7f0000",
"8":"8000000000000000",
"9":"61a8db78a61500db",
"10":"3200000000000000",
"11":"4602000000000000",
"12":"0000000000000000",
"13":"0000000000000000",
"14":"0000000000000000",
"15":"0000000000000000",
"16":"960b000001000000",
"17":"0202000000000000",
"18":"2b00000000000000",
"19":"0000000000000000",
"20":"0000000000000000"},
"memory":[
{"address":140734799804592,"bytes":"c8f8bf5fff7f0000c9a59e8cff7f0000"},
{"address":140734799804616,"bytes":"00000000000000000100000000000000"}
]
}
]
It contains an array of dicitionaries with all of the key value pairs that are normally in the stop reply packet. Including the expedited registers. Notice that is also contains expedited memory in the "memory" key. Any values in this memory will get included in a new L1 cache in lldb_private::Process where if a memory read request is made and that memory request fits into one of the L1 memory cache blocks, it will use that memory data. If a memory request fails in the L1 cache, it will fall back to the L2 cache which is the same block sized caching we were using before these changes. This allows a process to expedite memory that you are likely to use and it reduces packet count. On MacOSX with debugserver, we expedite the frame pointer backchain for a thread (up to 256 entries) by reading 2 pointers worth of bytes at the frame pointer (for the previous FP and PC), and follow the backchain. Most backtraces on MacOSX and iOS now don't require us to read any memory!
We will try these packets out and if successful, we should port these to lldb-server in the near future.
<rdar://problem/21494354>
llvm-svn: 240354
For some communication channels, sending large packets can be very
slow. In those cases, it may be faster to compress the contents of
the packet on the target device and decompress it on the debug host
system. For instance, communicating with a device using something
like Bluetooth may be an environment where this tradeoff is a good one.
This patch adds a new field to the response to the "qSupported" packet
(which returns a "qXfer:features:" response) -- SupportedCompressions
and DefaultCompressionMinSize. These tell you what the remote
stub can support.
lldb, if it wants to enable compression and can handle one of those
algorithms, it can send a QEnableCompression packet specifying the
algorithm and optionally the minimum packet size to use compression
on. lldb may have better knowledge about the best tradeoff for
a given communication channel.
I added support to debugserver an lldb to use the zlib APIs
(if -DHAVE_LIBZ=1 is in CFLAGS and -lz is in LDFLAGS) and the
libcompression APIs on Mac OS X 10.11 and later
(if -DHAVE_LIBCOMPRESSION=1). libz "zlib-deflate" compression.
libcompression can support deflate, lz4, lzma, and a proprietary
lzfse algorithm. libcompression has been hand-tuned for Apple
hardware so it should be preferred if available.
debugserver currently only adds the SupportedCompressions when
it is being run on an Apple watch (TARGET_OS_WATCH). Comment
that #if out from RNBRemote.cpp if you want to enable it to
see how it works. I haven't tested this on a native system
configuration but surely it will be slower to compress & decompress
the packets in a same-system debug session.
I haven't had a chance to add support for this to
GDBRemoteCommunciationServer.cpp yet.
<rdar://problem/21090180>
llvm-svn: 240066
a number of warnings to be enabled. The one making the most noise
across the code base right now is CLANG_WARN_UNREACHABLE_CODE = YES.
llvm-svn: 219910
do that (RunCommandInterpreter, HandleCommands, HandleCommandsFromFile) to gather
the options into an options class. Also expose that to the SB API's.
Change the way the "-o" options to the lldb driver are processed so:
1) They are run synchronously - didn't really make any sense to run the asynchronously.
2) The stop on error
3) "quit" in one of the -o commands will not quit lldb - not the command interpreter
that was running the -o commands.
I added an entry to the run options to stop-on-crash, but I haven't implemented that yet.
llvm-svn: 219553
Elevate ProcessInfo and ProcessLaunchInfo into their own headers.
llgs will be using ProcessLaunchInfo but doesn't need to pull in
the rest of Process.h.
This also moves a bunch of implementation details from the header
declarations into ProcessInfo.cpp and ProcessLaunchInfo.cpp.
Tested on Ubuntu 14.04 Cmake and MacOSX Xcode.
Related to https://github.com/tfiala/lldb/issues/26.
llvm-svn: 212005
lldb support. I'll be doing more testing & cleanup but I wanted to
get the initial checkin done.
This adds a new SBExpressionOptions::SetLanguage API for selecting a
language of an expression.
I added adds a new SBThread::GetInfoItemByPathString for retriving
information about a thread from that thread's StructuredData.
I added a new StructuredData class for representing
key-value/array/dictionary information (e.g. JSON formatted data).
Helper functions to read JSON and create a StructuredData object,
and to print a StructuredData object in JSON format are included.
A few Cocoa / Cocoa Touch data formatters were updated by Enrico
to track changes in iOS 8 / Yosemite.
Before we query a thread's extended information, the system runtime may
provide hints to the remote debug stub that it will use to retrieve values
out of runtime structures. I added a new SystemRuntime method
AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add
key-value type data to the initial request that we send to the remote stub.
The thread-format formatter string can now retrieve values out of a thread's
extended info structured data. The default thread-format string picks up
two of these - thread.info.activity.name and thread.info.trace_messages.
I added a new "jThreadExtendedInfo" packet in debugserver; I will
add documentation to the lldb-gdb-remote.txt doc soon. It accepts
JSON formatted arguments (most importantly, "thread":threadnum) and
it returns a variety of information regarding the thread to lldb
in JSON format. This JSON return is scanned into a StructuredData
object that is associated with the thread; UI layers can query the
thread's StructuredData to see if key-values are present, and if
so, show them to the user. These key-values are likely to be
specific to different targets with some commonality among many
targets. For instance, many targets will be able to advertise the
pthread_t value for a thread.
I added an initial rough cut of "thread info" command which will print
the information about a thread from the jThreadExtendedInfo result.
I need to do more work to make this format reasonably.
Han Ming added calls into the pmenergy and pmsample libraries if
debugserver is run on Mac OS X Yosemite to get information about the
inferior's power use.
I added support to debugserver for gathering the Genealogy information
about threads, if it exists, and returning it in the jThreadExtendedInfo
JSON result.
llvm-svn: 210874
Need to spend a little more time with suppressing the debugserver 64-to-32 bit warnings.
Will re-submit after I get the warnings properly suppressed.
llvm-svn: 209151
These changes were written by Greg Clayton, Jim Ingham, Jason Molenda.
It builds cleanly against TOT llvm with xcodebuild. I updated the
cmake files by visual inspection but did not try a build. I haven't
built these sources on any non-Mac platforms - I don't think this
patch adds any code that requires darwin, but please let me know if
I missed something.
In debugserver, MachProcess.cpp and MachTask.cpp were renamed to
MachProcess.mm and MachTask.mm as they picked up some new Objective-C
code needed to launch processes when running on iOS.
llvm-svn: 205113
Example code:
remote_platform = lldb.SBPlatform("remote-macosx");
remote_platform.SetWorkingDirectory("/private/tmp")
debugger.SetSelectedPlatform(remote_platform)
connect_options = lldb.SBPlatformConnectOptions("connect://localhost:1111");
err = remote_platform.ConnectRemote(connect_options)
if err.Success():
print >> result, 'Connected to remote platform:'
print >> result, 'hostname: %s' % (remote_platform.GetHostname())
src = lldb.SBFileSpec("/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework", False)
dst = lldb.SBFileSpec()
# copy src to platform working directory since "dst" is empty
err = remote_platform.Install(src, dst);
if err.Success():
print >> result, '%s installed successfully' % (src)
else:
print >> result, 'error: failed to install "%s": %s' % (src, err)
Implemented many calls needed in lldb-platform to be able to install a directory that contains symlinks, file and directories.
The remote lldb-platform can now launch GDB servers on the remote system so that remote debugging can be spawned through the remote platform when connected to a remote platform.
The API in SBPlatform is subject to change and will be getting many new functions.
llvm-svn: 195273
Summary:
This merge brings in the improved 'platform' command that knows how to
interface with remote machines; that is, query OS/kernel information, push
and pull files, run shell commands, etc... and implementation for the new
communication packets that back that interface, at least on Darwin based
operating systems via the POSIXPlatform class. Linux support is coming soon.
Verified the test suite runs cleanly on Linux (x86_64), build OK on Mac OS
X Mountain Lion.
Additional improvements (not in the source SVN branch 'lldb-platform-work'):
- cmake build scripts for lldb-platform
- cleanup test suite
- documentation stub for qPlatform_RunCommand
- use log class instead of printf() directly
- reverted work-in-progress-looking changes from test/types/TestAbstract.py that work towards running the test suite remotely.
- add new logging category 'platform'
Reviewers: Matt Kopec, Greg Clayton
Review: http://llvm-reviews.chandlerc.com/D1493
llvm-svn: 189295
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
- TestCase.m_thread is now filled in with the first thread that has a valid
stop reason. This eliminates the need for the SelectMyThread() functions.
- The first thread that stops for a reason is also set as the selected thread
in the process in case any command line commands are run.
- Changed launch over to take a SBLaunchInfo parameter so that the launch
function doesn't keep getting new arguments as they are needed.
- TestCase::Setup() and TestCase::Launch(SBLaunchInfo) now return bool to
indicate success of setup and launch.
- ActionWanted::Next(SBThread) was renamed to ActionWanted::StepOver(SBThread)
- ActionWanted::Finish(SBThread) was renamed to ActionWanted::StepOut(SBThread)
llvm-svn: 177376
Also added a TimeSpecTimeout class which can be used with any calls that take a "struct timespec *" as an argument. It is used by the KQueue class.
Also updated some project settings.
llvm-svn: 175377
DebugClang builds of LLDB to build a properly
codesigned debugserver. I did this by adding
a DebugClang configuration to debugserver that's
just a clone of the Debug configuration.
llvm-svn: 168746