- adding a conservative check for now (TODO: use the dependence analysis pass
once the latter is extended to deal with DMA ops). resolve an existing bug on
a test case.
- update test cases
PiperOrigin-RevId: 224869526
- fix replaceAllMemRefUsesWith call to replace only inside loop body.
- handle the case where DMA buffers are dynamic; extend doubleBuffer() method
to handle dynamically shaped DMA buffers (pass the right operands to AllocOp)
- place alloc's for DMA buffers at the depth at which pipelining is being done
(instead of at top-level)
- add more test cases
PiperOrigin-RevId: 224852231
This CL implement exclusive upper bound behavior as per b/116854378.
A followup CL will update the semantics of the for loop.
PiperOrigin-RevId: 220448963
As per MLIR spec, the absence of affine maps in MemRef type is interpreted as
an implicit identity affine map. Therefore, MemRef types declared with
explicit or implicit identity map should be considered equal at the MemRefType
level. During MemRefType construction, drop trivial identity affine map
compositions. A trivial identity composition consists of a single unbounded
identity map. It is unclear whether affine maps should be composed in-place to
a single map during MemRef type construction, so non-trivial compositions that
could have been simplified to an identity are NOT removed. We chose to drop
the trivial identity map rather than inject it in places that assume its
present implicitly because it makes the code simpler by reducing boilerplate;
identity mappings are obvious defaults.
Update tests that were checking for the presence of trivial identity map
compositions in the outputs.
PiperOrigin-RevId: 218862454
multiple TODOs.
- replace the fake test pass (that worked on just the first loop in the
MLFunction) to perform DMA pipelining on all suitable loops.
- nested DMAs work now (DMAs in an outer loop, more DMAs in nested inner loops)
- fix bugs / assumptions: correctly copy memory space and elemental type of source
memref for double buffering.
- correctly identify matching start/finish statements, handle multiple DMAs per
loop.
- introduce dominates/properlyDominates utitilies for MLFunction statements.
- move checkDominancePreservationOnShifts to LoopAnalysis.h; rename it
getShiftValidity
- refactor getContainingStmtPos -> findAncestorStmtInBlock - move into
Analysis/Utils.h; has two users.
- other improvements / cleanup for related API/utilities
- add size argument to dma_wait - for nested DMAs or in general, it makes it
easy to obtain the size to use when lowering the dma_wait since we wouldn't
want to identify the matching dma_start, and more importantly, in general/in the
future, there may not always be a dma_start dominating the dma_wait.
- add debug information in the pass
PiperOrigin-RevId: 217734892
- add util to create a private / exclusive / single use affine
computation slice for an op stmt (see method doc comment); a single
multi-result affine_apply op is prepended to the op stmt to provide all
results needed for its operands as a function of loop iterators and symbols.
- use it for DMA pipelining (to create private slices for DMA start stmt's);
resolve TODOs/feature request (b/117159533)
- move createComposedAffineApplyOp to Transforms/Utils; free it from taking a
memref as input / generalize it.
PiperOrigin-RevId: 216926818
Add target independent standard DMA ops: dma.start, dma.wait. Update pipeline
data transfer to use these to detect DMA ops.
While on this
- return failure from mlir-opt::performActions if a pass generates invalid output
- improve error message for verify 'n' operand traits
PiperOrigin-RevId: 216429885
1) affineint (as it is named) is not a type suitable for general computation (e.g. the multiply/adds in an integer matmul). It has undefined width and is undefined on overflow. They are used as the indices for forstmt because they are intended to be used as indexes inside the loop.
2) It can be used in both cfg and ml functions, and in cfg functions. As you mention, “symbols” are not affine, and we use affineint values for symbols.
3) Integers aren’t affine, the algorithms applied to them can be. :)
4) The only suitable use for affineint in MLIR is for indexes and dimension sizes (i.e. the bounds of those indexes).
PiperOrigin-RevId: 216057974
with a new one (of a potentially different rank/shape) with an optional index
remapping.
- introduce Utils::replaceAllMemRefUsesWith
- use this for DMA double buffering
(This CL also adds a few temporary utilities / code that will be done away with
once:
1) abstract DMA op's are added
2) memref deferencing side-effect / trait is available on op's
3) b/117159533 is resolved (memref index computation slices).
PiperOrigin-RevId: 215831373