Examples:
i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
This is a small generalization of a fold requested in PR43650:
https://bugs.llvm.org/show_bug.cgi?id=43650
The sign-bit of the condition operand can be used as a mask for the true operand:
https://rise4fun.com/Alive/paT
Note that we already handle some of the patterns (isNegative + scalar) because
there's an over-specialized, yet over-reaching fold for that in foldSelectCCToShiftAnd().
It doesn't use any TLI hooks, so I can't easily rip out that code even though we're
duplicating part of it here. This fold is guarded by TLI.convertSelectOfConstantsToMath(),
so it should not cause problems for targets that prefer select over shift.
Also worth noting: I thought we could generalize this further to include the case where
the true operand of the select is not constant, but Alive says that may allow poison to
pass through where it does not in the original select form of the code.
Differential Revision: https://reviews.llvm.org/D68949
llvm-svn: 374902
Summary:
When files often get touched during builds, the mtime based validation
leads to different problems in implicit modules builds, even when the
content doesn't actually change:
- Modules only: module invalidation due to out of date files. Usually causing rebuild traffic.
- Modules + PCH: build failures because clang cannot rebuild a module if it comes from building a PCH.
- PCH: build failures because clang cannot rebuild a PCH in case one of the input headers has different mtime.
This patch proposes hashing the content of input files (headers and
module maps), which is performed during serialization time. When looking
at input files for validation, clang only computes the hash in case
there's a mtime mismatch.
I've tested a couple of different hash algorithms availble in LLVM in
face of building modules+pch for `#import <Cocoa/Cocoa.h>`:
- `hash_code`: performace diff within the noise, total module cache increased by 0.07%.
- `SHA1`: 5% slowdown. Haven't done real size measurements, but it'd be BLOCK_ID+20 bytes per input file, instead of BLOCK_ID+8 bytes from `hash_code`.
- `MD5`: 3% slowdown. Like above, but BLOCK_ID+16 bytes per input file.
Given the numbers above, the patch uses `hash_code`. The patch also
improves invalidation error msgs to point out which type of problem the
user is facing: "mtime", "size" or "content".
rdar://problem/29320105
Reviewers: dexonsmith, arphaman, rsmith, aprantl
Subscribers: jkorous, cfe-commits, ributzka
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67249
> llvm-svn: 374841
llvm-svn: 374895
Summary:
Currently clangd initializes the ClangdServer lazily during
onInitialize request, and it results in propagation of caller's context rather
than the main context created ClangdLSPServer.
This patch changes the logic to store main context that created ClangdLSPServer
and pass it onto to ClangdServer and other objects like CDBs.
Reviewers: sammccall
Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68978
llvm-svn: 374892
Reverse the logic for valid tail predication instructions and create
a whitelist instead. Added other instruction groups that aren't
obviously safe:
- instructions that 'narrow' their result.
- lane moves.
- byte swapping instructions.
- interleaving loads and stores.
- cross-beat carries.
- top/bottom instructions.
- complex operations.
Hopefully we should be able to add more of these instructions to the
whitelist, once we have a more concrete idea of the transform.
Differential Revision: https://reviews.llvm.org/D67904
llvm-svn: 374887
The 1st attempt at rL374828 inserted the code
at the wrong position (outside of the constant-shift-amount
block). Trying again with an additional test to verify
const-ness.
For a constant shift amount, add the following fold.
shl (zext (i1 X)), ShAmt --> select (X, 1 << ShAmt, 0)
https://rise4fun.com/Alive/IZ9
Fixes PR42257.
Based on original patch by @zvi (Zvi Rackover)
Differential Revision: https://reviews.llvm.org/D63382
llvm-svn: 374886
Fix accidentally making clangTidy library link to dylib. This causes
libclang.so to also link to dylib which results in duplicate symbols
from shared and static libraries, and effectively to registering
command-line options twice.
Thanks to Sylvestre Ledru for noticing this and tracking it down
to r373786. Fixes PR#43589.
Differential Revision: https://reviews.llvm.org/D68927
llvm-svn: 374885
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is referenced with arguments, and tests thereof.
llvm-svn: 374882
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
Summary:
DWARF's DW_OP_entry_value operation has two operands; the first is a
ULEB128 operand that specifies the size of the second operand, which is
a DWARF block. This means that we need to be able to pre-calculate and
emit the size of DWARF expressions before emitting them. There is
currently no interface for doing this in DwarfExpression, so this patch
introduces that.
When implementing this I initially thought about running through
DwarfExpression's emission two times; first with a temporary buffer to
emit the expression, in order to being able to calculate the size of
that emitted data. However, DwarfExpression is a quite complex state
machine, so I decided against that, as it seemed like the two runs could
get out of sync, resulting in incorrect size operands. Therefore I have
implemented this in a way that we only have to run DwarfExpression once.
The idea is to emit DWARF to a temporary buffer, for which it is
possible to query the size. The data in the temporary buffer can then be
emitted to DwarfExpression's main output.
In the case of DIEDwarfExpression, a temporary DIE is used. The values
are all allocated using the same BumpPtrAllocator as for all other DIEs,
and the values are then transferred to the real value list. In the case
of DebugLocDwarfExpression, the temporary buffer is implemented using a
BufferByteStreamer which emits to a buffer in the DwarfExpression
object.
Reviewers: aprantl, vsk, NikolaPrica, djtodoro
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67768
llvm-svn: 374879
This patch kills off a significant user of the "IsIndirect" field of
DBG_VALUE machine insts. Brought up in in PR41675, IsIndirect is
techncally redundant as it can be expressed by the DIExpression of a
DBG_VALUE inst, and it isn't helpful to have two ways of expressing
things.
Rather than setting IsIndirect, have DBG_VALUE creators add an extra deref
to the insts DIExpression. There should now be no appearences of
IsIndirect=True from isel down to LiveDebugVariables / VirtRegRewriter,
which is ensured by an assertion in LDVImpl::handleDebugValue. This means
we also get to delete the IsIndirect handling in LiveDebugVariables. Tests
can be upgraded by for example swapping the following IsIndirect=True
DBG_VALUE:
DBG_VALUE $somereg, 0, !123, !DIExpression(DW_OP_foo)
With one where the indirection is in the DIExpression, by _appending_
a deref:
DBG_VALUE $somereg, $noreg, !123, !DIExpression(DW_OP_foo, DW_OP_deref)
Which both mean the same thing.
Most of the test changes in this patch are updates of that form; also some
changes in how the textual assembly printer handles these insts.
Differential Revision: https://reviews.llvm.org/D68945
llvm-svn: 374877
Add vector MSA register classes to fprb, they are 128 bit wide.
MSA instructions use the same registers for both integer and floating
point operations. Therefore we only need to check for vector element
size during legalization or instruction selection.
Add helper function in MipsLegalizerInfo and switch to legalIf
LegalizeRuleSet to keep legalization rules compact since they depend
on MipsSubtarget and presence of MSA.
fprb is assigned to all vector operands.
Move selectLoadStoreOpCode to MipsInstructionSelector in order to
reduce number of arguments.
Differential Revision: https://reviews.llvm.org/D68867
llvm-svn: 374872
This changes the 32-element SmallVector to a std::vector. When building
a RelWithDebInfo clang-8 binary, the average size of the vector was
~10000, so it does not seem very beneficial or practical to use a small
vector for that.
The DWARFBytes SmallVector grows in the same way as Comments, so perhaps
that also should be changed to a purely dynamically allocated structure,
but that requires some more code changes, so I let that remain as a
SmallVector for now.
llvm-svn: 374871
Check if size of operand LLT matches sizes of available register banks
before inspecting the opcode in order to reduce number of checks.
Factor commonly used pieces of code into functions.
Differential Revision: https://reviews.llvm.org/D68866
llvm-svn: 374870
This makes use of it slightly clearer, and makes it match the
same construct in the lld ELF linker.
Differential Revision: https://reviews.llvm.org/D68935
llvm-svn: 374869
This #define is in the non-Go ppc64le build but not in the Go build.
Reviewed-in: https://reviews.llvm.org/D68046
Author: randall77 (Keith Randall)
llvm-svn: 374868
This matches all other architectures listed in the same file.
This fixes debugging aarch64 executables with lldb-server, which
otherwise fails, with log messages like these:
Target::SetArchitecture changing architecture to aarch64 (aarch64-pc-windows-msvc)
Target::SetArchitecture Trying to select executable file architecture aarch64 (aarch64-pc-windows-msvc)
ArchSpec::SetArchitecture sets the vendor to llvm::Triple::PC
for any coff/win32 combination, and if this doesn't match the triple
set by the PECOFF module, things doesn't seem to work with when
using lldb-server.
Differential Revision: https://reviews.llvm.org/D68939
llvm-svn: 374867
This corresponds to commonly used options to UnDecorateSymbolName
within llvm.
Add them as hidden options in llvm-undname. MS undname.exe takes
numeric flags, corresponding to the UNDNAME_* constants, but instead
of hardcoding in mappings for those numbers, just add textual
options instead, as it the use of them here is primarily intended
for testing.
Differential Revision: https://reviews.llvm.org/D68917
llvm-svn: 374865
- use a full triple instead of just the architecture (makes the test
pass on non-apple hosts)
- skip the test if the ARM llvm target is not built
llvm-svn: 374863
The only things VBROADCAST_LOAD uses is an address and a chain
node. It has no vector inputs.
So if its a user of the source of another broadcast that could
only mean one of two things. The other broadcast is broadcasting
the address of the broadcast_load. Or the source is a load and
the use we're seeing is the chain result from that load. Neither
of these cases make sense to combine here.
This issue was reported post-commit r373871. Test case has not
been reduced yet.
llvm-svn: 374862
LLVM may annotate the function with fastcc if there has only one caller
and there're no other caller out of the module and the function is not
naked or contain variable arguments.
The fastcc functions could pass the arguments by the caller saved registers.
Differential Revision: https://reviews.llvm.org/D68559
llvm-svn: 374857
Summary:
The WebAssembly backend lowers fptoint instructions to a code sequence
that checks for overflow to avoid traps because fptoint is supposed to
be speculatable. These new builtins and intrinsics give users a way to
depend on the trapping semantics of the underlying instructions and
avoid the extra code generated normally.
Patch by coffee and tlively.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D68902
llvm-svn: 374856
By default `platform process list` only shows the processes of the current user that lldb-server can parse.
There are several problems:
- apk programs don't have an executable file. They instead use a package name as identifier. We should show them instead.
- each apk also runs under a different user. That's how android works
- because of the user permission, some files like /proc/<pid>/{environ,exe} can't be read.
This results in a very small process list.
This is a local run on my machine
```
(lldb) platform process list
2 matching processes were found on "remote-android"
PID PARENT USER TRIPLE NAME
====== ====== ========== ======================== ============================
23291 3177 aarch64-unknown-linux-android sh
23301 23291 aarch64-unknown-linux-android lldb-server
```
However, I have 700 processes running at this time.
By implementing a few fallbacks for android, I've expanded this list to 202, filtering out kernel processes, which would presumably appear in this list if the device was rooted.
```
(lldb) platform process list
202 matching processes were found on "remote-android"
PID PARENT USER TRIPLE NAME
====== ====== ========== ======================== ============================
...
12647 3208 aarch64-unknown-linux-android sh
12649 12647 aarch64-unknown-linux-android lldb-server
12653 982 com.samsung.faceservice
13185 982 com.samsung.vvm
15899 982 com.samsung.android.spay
16220 982 com.sec.spp.push
17126 982 com.sec.spp.push:RemoteDlcProcess
19772 983 com.android.chrome
20209 982 com.samsung.cmh:CMH
20380 982 com.google.android.inputmethod.latin
20879 982 com.samsung.android.oneconnect:Receiver
21212 983 com.tencent.mm
24459 1 aarch64-unknown-linux-android wpa_supplicant
25974 982 com.samsung.android.contacts
26293 982 com.samsung.android.messaging
28714 982 com.samsung.android.dialer
31605 982 com.samsung.android.MtpApplication
32256 982 com.bezobidny
```
Something to notice is that the architecture is unkonwn for all apks. And that's fine, because run-as would be required to gather this information and that would make this entire functionality massively slow.
There are still several improvements to make here, like displaying actual user names, which I'll try to do in a following diff.
Note: Regarding overall apk debugging support from lldb. I'm planning on having lldb spawn lldb-server by itself with the correct user, so that everything works well. The initial lldb-server used for connecting to the remote platform can be reused for such purpose. Furthermore, eventually lldb could also launch that initial lldb-server on its own.
Differential Revision: D68289
llvm-svn: 374853
We need to encode bit 4 into the EVEX.V' bit. We do this right
for regular gather/scatter which use either MRMSrcMem or MRMDestMem
formats. The prefetches use MRM*m formats.
Fixes an issue recently added to PR36202.
llvm-svn: 374849