Summary:
EnablePluginLogging, GetPluginCommandHelp and ExecutePluginCommand aren't
implemented or used anywhere, so remove them from the Hexagon and POSIX
Dynamic Loaders as well as the FreeBSD process.
Reviewers: clayborg, labath, emaste
Subscribers: lldb-commits, emaste
Differential Revision: http://reviews.llvm.org/D13581
llvm-svn: 249840
when they introduced android testsuite regressions. Pavel has run the
testsuite against the updated patch and it completes cleanly now.
The original commit message:
Fixing a subtle issue on Mac OS X systems with dSYMs (possibly
introduced by r235737 but I didn't look into it too closely).
A dSYM can have a per-UUID plist in it which tells lldb where
to find an executable binary for the dSYM (DBGSymbolRichExecutable)
- other information can be included in this plist, like how to
remap the source file paths from their build pathnames to their
long-term storage pathnames.
This per-UUID plist is a unusual; it is used probably exclusively
inside apple with our build system. It is not created by default
in normal dSYMs.
The problem was like this:
1. lldb wants to find an executable, given only a UUID
(this happens when lldb is doing cross-host debugging
and doesn't have a copy of the target system's binaries)
2. It eventually calls LocateMacOSXFilesUsingDebugSymbols
which does a spotlight search for the dSYM on the local
system, and failing that, tries the DBGShellCommands
command to find the dSYM.
3. It gets a dSYM. It reads the per-UUID plist in the dSYM.
The dSYM has a DBGSymbolRichExecutable kv pair pointing to
the binary on a network filesystem.
4. Using the binary on the network filesystem, lldb now goes
to find the dSYM.
5. It starts by looking for a dSYM next to the binary it found.
6. lldb is now reading the dSYM over a network filesystem,
ignoring the one it found on its local filesystem earlier.
Everything still *works* but it's much slower.
This would be a tricky one to write up in a testsuite case;
you really need the binary to not exist on the local system.
And LocateMacOSXFilesUsingDebugSymbols will only compile on
Mac OS X - even if I found a way to write up a test case, it
would not run anywhere but on a mac.
One change Greg wanted while I was touching this code was to
have LocateMacOSXFilesUsingDebugSymbols (which could be asked
to find a binary OR find a dSYM) to instead return a ModuleSpec
with the sum total of everything it could find. This
change of passing around a ModuleSpec instead of a FileSpec
was percolated up into ModuleList::GetSharedModule.
The changes to LocateMacOSXFilesUsingDebugSymbols look larger
than they really are - there's a lot of simple whitespace changes
in there.
I ran the testsuites on mac, no new regressions introduced
<rdar://problem/21993813>
llvm-svn: 249755
* Use .ARM.exidx as a fallback unwind plan for non-call site when the
instruction emulation based unwind failed.
* Work around an old compiler issue where the compiler isn't sort the
entries in .ARM.exidx based on their address.
* Fix unwind info parsing when the virtual file address >= 0x80000000
* Fix bug in unwind info parsing when neither lr nor pc is explicitly
restored.
Differential revision: http://reviews.llvm.org/D13380
llvm-svn: 249119
GP registers for o32 applications were always giving zero value because SetType() on the RegisterValue was causing the accessor functions to pickup the value from m_scalar of RegisterValue which is zero.
In this patch byte size and byte order of register value is set at the time of setting the value of the register.
llvm-svn: 249020
introduced by r235737 but I didn't look into it too closely).
A dSYM can have a per-UUID plist in it which tells lldb where
to find an executable binary for the dSYM (DBGSymbolRichExecutable)
- other information can be included in this plist, like how to
remap the source file paths from their build pathnames to their
long-term storage pathnames.
This per-UUID plist is a unusual; it is used probably exclusively
inside apple with our build system. It is not created by default
in normal dSYMs.
The problem was like this:
1. lldb wants to find an executable, given only a UUID
(this happens when lldb is doing cross-host debugging
and doesn't have a copy of the target system's binaries)
2. It eventually calls LocateMacOSXFilesUsingDebugSymbols
which does a spotlight search for the dSYM on the local
system, and failing that, tries the DBGShellCommands
command to find the dSYM.
3. It gets a dSYM. It reads the per-UUID plist in the dSYM.
The dSYM has a DBGSymbolRichExecutable kv pair pointing to
the binary on a network filesystem.
4. Using the binary on the network filesystem, lldb now goes
to find the dSYM.
5. It starts by looking for a dSYM next to the binary it found.
6. lldb is now reading the dSYM over a network filesystem,
ignoring the one it found on its local filesystem earlier.
Everything still *works* but it's much slower.
This would be a tricky one to write up in a testsuite case;
you really need the binary to not exist on the local system.
And LocateMacOSXFilesUsingDebugSymbols will only compile on
Mac OS X - even if I found a way to write up a test case, it
would not run anywhere but on a mac.
One change Greg wanted while I was touching this code was to
have LocateMacOSXFilesUsingDebugSymbols (which could be asked
to find a binary OR find a dSYM) to instead return a ModuleSpec
with the sum total of everything it could find. This
change of passing around a ModuleSpec instead of a FileSpec
was percolated up into ModuleList::GetSharedModule.
The changes to LocateMacOSXFilesUsingDebugSymbols look larger
than they really are - there's a lot of simple whitespace changes
in there.
I ran the testsuites on mac, no new regressions introduced
<rdar://problem/21993813>
llvm-svn: 248985
.ARM.exidx/.ARM.extab sections contain unwind information used on ARM
architecture from unwinding from an exception.
Differential revision: http://reviews.llvm.org/D13245
llvm-svn: 248903
on iOS devices; fallout from Vince's cleanups made
in r237218 back in May. iOS native lldbs will call
StartDebugserverProcess() with a random port #
(see ProcessGDBRemote::LaunchAndConnectToDebugserver)
and neither side of this conditional expression should
be followed in that case.
I added an "if (in_port == 0) { ..." check around the
entire if/then/else and indented the block of code so
the diff looks larger than it really is.
<rdar://problem/21712643>
llvm-svn: 248343
If a breakpoint was hit in the inferior after shutdown had
started but before it was complete, it would cause an unclean
terminate of the inferior, leading to various problems the most
visible of which is that handles to the inferior executable would
remain locked, and the test suite would fail to run subsequent
tests because it could not recompile the inferior.
This fixes a major source of flakiness in the test suite.
llvm-svn: 247929
Character with ASCII code 0 is incorrectly treated by LLDB as the end of
RSP packet. The left of the debugger server output is silently ignored.
Patch from evgeny.leviant@gmail.com
Reviewed by: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12523
llvm-svn: 247908
The Go runtime schedules user level threads (goroutines) across real threads.
This adds an OS plugin to create memory threads for goroutines.
It supports the 1.4 and 1.5 go runtime.
Differential Revision: http://reviews.llvm.org/D5871
llvm-svn: 247852
The implications of this bug where that "log disable windows" would
not actually disable the log, and worse it would lock the file handle
making it impossible to delete the file until lldb was shut down.
This was then causing the test suite to fail, because the test suite
tries to delete log files in certain situations.
llvm-svn: 247841
SUMMARY:
Refer to http://lists.llvm.org/pipermail/lldb-dev/2015-August/008024.html for discussion
on this topic. Bare-iron target like YAMON gdb-stub does not support qProcessInfo, qC,
qfThreadInfo, Hg and Hc packets. Reply from ? packet is as simple as S05. There is no
packet which gives us process or threads information. In such cases, assume pid=tid=1.
Reviewers: clayborg
Subscribers: nitesh.jain, mohit.bhakkad, sagar, bhushan and lldb-commits
Differential Revision: http://reviews.llvm.org/D12876
llvm-svn: 247773
"gcc" register numbers are now correctly referred to as "ehframe"
register numbers. In almost all cases, ehframe and dwarf register
numbers are identical (the one exception is i386 darwin where ehframe
regnums were incorrect).
The old "gdb" register numbers, which I incorrectly thought were
stabs register numbers, are now referred to as "Process Plugin"
register numbers. This is the register numbering scheme that the
remote process controller stub (lldb-server, gdbserver, core file
support, kdp server, remote jtag devices, etc) uses to refer to the
registers. The process plugin register numbers may not be contiguous
- there are remote jtag devices that have gaps in their register
numbering schemes.
I removed all of the enums for "gdb" register numbers that we had
in lldb - these were meaningless - and I put LLDB_INVALID_REGNUM
in all of the register tables for the Process Plugin regnum slot.
This change is almost entirely mechnical; the one actual change in
here is to ProcessGDBRemote.cpp's ParseRegisters() which parses the
qXfer:features:read:target.xml response. As it parses register
definitions from the xml, it will assign sequential numbers as the
eRegisterKindLLDB numbers (the lldb register numberings must be
sequential, without any gaps) and if the xml file specifies register
numbers, those will be used as the eRegisterKindProcessPlugin
register numbers (and those may have gaps). A J-Link jtag device's
target.xml does contain a gap in register numbers, and it only
specifies the register numbers for the registers after that gap.
The device supports many different ARM boards and probably selects
different part of its register file as appropriate.
http://reviews.llvm.org/D12791
<rdar://problem/22623262>
llvm-svn: 247741
Summary:
Linux and FreeBSD occasionally send SI_KERNEL codes, nonexistent on other platforms.
Problem caught on NetBSD.
Reviewers: joerg, sas
Subscribers: sas, lldb-commits, emaste
Differential Revision: http://reviews.llvm.org/D12659
Change by Kamil Rytarowski <n54@gmx.com>
llvm-svn: 247579
RegisterContextPOSIX.h is poorly named and contains only the declaration
of POSIXBreakpointProtocol, which is used for in-process live kernel
debugging. It is now relevant only to FreeBSD.
In source/Plugins/Process/Utility/RegisterContext*.h (after assorted
rework and refactoring) it only served the purpose of #including other
necessary headers as a side-effect. Remove it from them and just include
the required headers directly.
Differential Revision: http://reviews.llvm.org/D12830
llvm-svn: 247558
Summary:
Realtime signals generally do not represent an error condition in an application but are more
like a regular means of IPC. As such, we shouldn't interrupt an application whenever it recieves
one. If any application will use these signals, it will probably use them a lot, rendering it's
debugging tiresome if we stopped at every signal. Furthermore, these signals are likely to be used
in a low level library, and the programmer may not even be aware of their presence.
For these reasons, I am switching the default disposition of realtime signals on all supported
platforms (i.e. Linux and Freebsd) to no-stop, no-notify. Any user still wishing to receive these
signals can always change the default to suit his needs.
Reviewers: ovyalov, emaste
Subscribers: lldb-commits, emaste
Differential Revision: http://reviews.llvm.org/D12795
llvm-svn: 247537
In some special case (e.g. signal handlers, hand written assembly) it is
valid to have 2 stack frame with the same CFA value. This CL change the
looping stack detection code to report a loop only if at least 3
consecutive frames have the same CFA.
Differential revision: http://reviews.llvm.org/D12699
llvm-svn: 247133
qXfer:features:read:target.xml packet, or via the
plugin.process.gdb-remote.target-definition-file setting, if the
register definition doesn't give us eh_frame or DWARF register
numbers for that register, try to get that information from the ABI
plugin.
The DWARF/eh_frame register numbers are defined in the ABI
standardization documents - so getting this from the ABI plugin is
reasonable. There's little value in having the remote stub inform
us of this generic information, as long as we can all agree on the
names of the registers.
There's some additional information we could get from the ABI. For
instance, on ABIs where function arguments are passed in registers,
lldb defines alternate names like "arg1", "arg2", "arg3" for these
registers so they can be referred to that way by the user. We could
get this from the ABI if the remote stub doesn't provide that. That
may be something worth doing in the future - but for now, I'm keeping
this a little more minimal.
Thinking about this, what we want/need from the remote stub at a
minimum are:
1. The names of the register
2. The number that the stub will use to refer to the register with
the p/P packets and in the ? response packets (T/S) where
expedited register values are provided
3. The size of the register in bytes
(nice to have, to remove any doubt)
4. The offset of the register in the g/G packet if we're going to
use that for reading/writing registers.
debugserver traditionally provides a lot more information in
addition to this via the qRegisterInfo packet, and debugserver
augments its response to the qXfer:features:read:target.xml
query to include this information. Including:
DWARF regnum, eh_frame regnum, stabs regnum, encoding (ieee754,
Uint, Vector, Sint), format (hex, unsigned, pointer, vectorof*,
float), registers that should be marked as invalid if this
register is modified, and registers that contain this register.
We might want to get all of this from the ABI - I'm not convinced
that it makes sense for the remote stub to provide any of these
details, as long as the ABI and remote stub can agree on register
names.
Anyway, start with eh_frame and DWARF coming from the ABI if
they're not provided by the remote stub. We can look at doing
more in the future.
<rdar://problem/22566585>
llvm-svn: 247121
When lldb receives a gdb-remote protocol packet that has
nonprintable characters, it will print the packet in
gdb-remote logging with binary-hex encoding so we don't
dump random 8-bit characters into the packet log.
I'm changing this check to allow whitespace characters
(newlines, linefeeds, tabs) to be printed if those are
the only non-printable characters in the packet.
This is primarily to get the response to the
qXfer:features:read:target.xml packet to show up in the
packet logs in human readable form. Right now we just
get a dozen kilobytes of hex-ascii and it's hard to
figure out what register number scheme is being used.
llvm-svn: 247120
Summary:
- For 'register read --all' command on x86_64-Linux Platform:
-- Provide correct values of X87 FPU Special Purpose Registers
-- Both 32-bit & 64-bit inferiors give correct values on this
Platform
- Added a Test Vector:
-- To verify the expected behaviour of the command
Signed-off-by: Abhishek Aggarwal <abhishek.a.aggarwal@intel.com>
Reviewers: ashok.thirumurthi, granata.enrico, tfiala, clayborg
Differential Revision: http://reviews.llvm.org/D12592
llvm-svn: 246955
Summary:
There was a race condition in the AsyncThread, where we would end up sending a vAttach
notification to the thread before it got a chance set up its listener (this can be reproduced by
adding a sleep() at the very beginning of ProcessGDBRemote::AsyncThread()). This event would then
get lost and we LLDB would deadlock. I fix this by setting up the listener early on, in the
ProcessGDBRemote constructor.
This should improve the stability of all attach tests. For now, I am removing XTIMEOUT from
TestAttachResume, and will watch the buildbots for signs of trouble.
Reviewers: clayborg, ovyalov
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12552
llvm-svn: 246756
Summary:
This doesn't exist in other LLVM projects any longer and doesn't
do anything.
Reviewers: chaoren, labath
Subscribers: emaste, tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D12586
llvm-svn: 246749
When detaching, we need to detach from all threads of the inferior and not just the main one.
Without this, a multi-threaded inferior would usually crash once the server exits.
llvm-svn: 246549
Linux sometimes sends us a PTRACE_EVENT_EXIT when an inferior process gets a SIGKILL. This can be
confusing, since normally we don't expect any events when the inferior is stopped. This commit
adds code to handle this situation (resume the thread and let it exit normally) and avoid an
assertion failure in ResumeThread().
llvm-svn: 246539
code that looks for a second stop-reply packet in response to an
interrupt (control-c). This is to handle the case where where a
stop packet is making its way up to lldb right as lldb decides to
interrupt the inferior. If the inferior is running and we interrupt
it, we'd expect a T11 type response meaning that the inferior halted
because of the interrupt. But if the interrupt gets a T05 type
response instead, meaning that we stopped execution by hitting a
breakpoint or whatever, then the interrupt was received while the
inferior was already paused and so it is treated as a "?" packet
-- the remote stub will send the stop message a second time.
There's a timeout where we wait to get this second stop reply packet
in SendContinuePacketAndWaitForResponse, currently 1ms. For a slow
remote target, it may take longer than that to send the second stop
reply packet. If that happens, then lldb will use that second stop
reply packet as the response for the next packet request it makes
to the remote stub. The two will be out of sync by one packet for
the rest of the debug session and it's going to go badly from then on.
I've seen times as slow as 46ms, and given the severity of missing that
second stop reply packet, I'm increasing the timeout to 100ms, or 0.1sec.
<rdar://problem/21990791>
llvm-svn: 246004
http://reviews.llvm.org/D9703
This updated patches correct problems in arm hardware watchpoint support patch posted earlier.
This patch has been tested on samsung chromebook (ARM - Linux) and PandaBoard using basic watchpoint test application.
Also it was tested on Nexus 7 Android device.
On chromebook linux we are able to set and clear all types of watchpoints but on android we end up getting a watchpoint packet error because we are not able to call hardware watchpoint ptrace functions successfully.
llvm-svn: 245961
Setting and getting register values as bytes instead of depending on the 128 bit integer support in register value.
This patch will fix the build failure in the release branch.
Reviewers: tberghammer, clayborg, hans
Subscribers: bhushan, nitesh.jain, jaydeep, lldb-commits
Differential: http://reviews.llvm.org/D12275
llvm-svn: 245927