Commit Graph

10 Commits

Author SHA1 Message Date
Chandler Carruth d4e80a9615 [PM] (NFC) Refactor the CGSCC pass manager tests to use lambda-based
passes.

This simplifies the test some and makes it more focused and clear what
is being tested. It will also make it much easier to extend with further
testing of different pass behaviors.

I've also replaced a pointless module pass with running the requires
pass directly as that is all that it was really doing.

llvm-svn: 280444
2016-09-02 01:08:04 +00:00
Chandler Carruth 8882346842 [PM] Introduce basic update capabilities to the new PM's CGSCC pass
manager, including both plumbing and logic to handle function pass
updates.

There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
   CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
   the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.

I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.

The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.

I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.

The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:

- We operate at three levels within the infrastructure: RefSCC, SCC, and
  Node. In each case, we are working bottom up and so we want to
  continue to iterate on the "lowest" node as the graph changes. Look at
  how we iterate over nodes in an SCC running function passes as those
  function passes mutate the CG. We continue to iterate on the "lowest"
  SCC, which is the one that continues to contain the function just
  processed.

- The call graph structure re-uses SCCs (and RefSCCs) during mutation
  events for the *highest* entry in the resulting new subgraph, not the
  lowest. This means that it is necessary to continually update the
  current SCC or RefSCC as it shifts. This is really surprising and
  subtle, and took a long time for me to work out. I actually tried
  changing the call graph to provide the opposite behavior, and it
  breaks *EVERYTHING*. The graph update algorithms are really deeply
  tied to this particualr pattern.

- When SCCs or RefSCCs are split apart and refined and we continually
  re-pin our processing to the bottom one in the subgraph, we need to
  enqueue the newly formed SCCs and RefSCCs for subsequent processing.
  Queuing them presents a few challenges:
  1) SCCs and RefSCCs use wildly different iteration strategies at
     a high level. We end up needing to converge them on worklist
     approaches that can be extended in order to be able to handle the
     mutations.
  2) The order of the enqueuing need to remain bottom-up post-order so
     that we don't get surprising order of visitation for things like
     the inliner.
  3) We need the worklists to have set semantics so we don't duplicate
     things endlessly. We don't need a *persistent* set though because
     we always keep processing the bottom node!!!! This is super, super
     surprising to me and took a long time to convince myself this is
     correct, but I'm pretty sure it is... Once we sink down to the
     bottom node, we can't re-split out the same node in any way, and
     the postorder of the current queue is fixed and unchanging.
  4) We need to make sure that the "current" SCC or RefSCC actually gets
     enqueued here such that we re-visit it because we continue
     processing a *new*, *bottom* SCC/RefSCC.

- We also need the ability to *skip* SCCs and RefSCCs that get merged
  into a larger component. We even need the ability to skip *nodes* from
  an SCC that are no longer part of that SCC.

This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.

We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.

Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:

- It is really nice to do this a function at a time because that
  function is likely hot in the cache. This means we want even the
  function pass adaptor to support online updates to the call graph!

- To update the call graph after arbitrary function pass mutations is
  quite hard. We have to build a fairly comprehensive set of
  data structures and then process them. Fortunately, some of this code
  is related to the code for building the cal graph in the first place.
  Unfortunately, very little of it makes any sense to share because the
  nature of what we're doing is so very different. I've factored out the
  one part that made sense at least.

- We need to transfer these updates into the various structures for the
  CGSCC pass manager. Once those were more sanely worked out, this
  became relatively easier. But some of those needs necessitated changes
  to the LazyCallGraph interface to make it significantly easier to
  extract the changed SCCs from an update operation.

- We also need to update the CGSCC analysis manager as the shape of the
  graph changes. When an SCC is merged away we need to clear analyses
  associated with it from the analysis manager which we didn't have
  support for in the analysis manager infrsatructure. New SCCs are easy!
  But then we have the case that the original SCC has its shape changed
  but remains in the call graph. There we need to *invalidate* the
  analyses associated with it.

- We also need to invalidate analyses after we *finish* processing an
  SCC. But the analyses we need to invalidate here are *only those for
  the newly updated SCC*!!! Because we only continue processing the
  bottom SCC, if we split SCCs apart the original one gets invalidated
  once when its shape changes and is not processed farther so its
  analyses will be correct. It is the bottom SCC which continues being
  processed and needs to have the "normal" invalidation done based on
  the preserved analyses set.

All of this is mostly background and context for the changes here.

Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.

Differential Revision: http://reviews.llvm.org/D21464

llvm-svn: 279618
2016-08-24 09:37:14 +00:00
Sean Silva 36e0d01e13 Consistently use FunctionAnalysisManager
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278077
2016-08-09 00:28:15 +00:00
Chandler Carruth 6c138ce31c [PM] Sink the module parsing from the fixture to the test as subsequent
tests will want different IR.

Wanted this when writing tests for the proposed CG update stuff, and
this is an easily separable piece.

llvm-svn: 273973
2016-06-28 00:38:42 +00:00
Chandler Carruth 74a8a2214a [PM] Run clang-format over various parts of the new pass manager code
prior to some very substantial patches to isolate any formatting-only
changes.

llvm-svn: 272991
2016-06-17 07:15:29 +00:00
Chandler Carruth 164a2aa6f4 [PM] Remove support for omitting the AnalysisManager argument to new
pass manager passes' `run` methods.

This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.

This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.

While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.

Thanks to Sean and Hal for bouncing ideas for this with me in IRC.

llvm-svn: 272978
2016-06-17 00:11:01 +00:00
Mehdi Amini 03b42e41bf Remove every uses of getGlobalContext() in LLVM (but the C API)
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.

This is the first part of http://reviews.llvm.org/D19094

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
2016-04-14 21:59:01 +00:00
Chandler Carruth b47f8010a9 [PM] Make the AnalysisManager parameter to run methods a reference.
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.

In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.

llvm-svn: 263219
2016-03-11 11:05:24 +00:00
Chandler Carruth c5d211ef2c [PM] Remove an overly aggressive assert now that I can actually test the
pattern that triggers it. This essentially requires an immutable
function analysis, as that will survive anything we do to invalidate it.
When we have such patterns, the function analysis manager will not get
cleared between runs of the proxy.

If we actually need an assert about how things are queried, we can add
more elaborate machinery for computing it, but so far I'm not aware of
significant value provided.

Thanks to Justin Lebar for noticing this when he made a (seemingly
innocuous) change to FunctionAttrs that is enough to trigger it in one
test there. Now it is covered by a direct test of the pass manager code.

llvm-svn: 261627
2016-02-23 10:47:57 +00:00
Chandler Carruth 743199221b [PM] Add a unittest for the CGSCC pass manager in the new pass manager
system.

Previously, this was only being tested with larger integration tests.
That makes it hard to isolated specific issues with it, and makes the
APIs themselves less well tested. Add a unittest based around the same
patterns used for testing the general pass manager.

llvm-svn: 261624
2016-02-23 10:02:02 +00:00