Clean-up after D98279, remove one call to createConvertGPUKernelToBlobPass().
Depends On D98203
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D98360
Continue the convergence between LLVM dialect and built-in types by replacing
the bfloat, half, float and double LLVM dialect types with their built-in
counterparts. At the API level, this is a direct replacement. At the syntax
level, we change the keywords to `bf16`, `f16`, `f32` and `f64`, respectively,
to be compatible with the built-in type syntax. The old keywords can still be
parsed but produce a deprecation warning and will be eventually removed.
Depends On D94178
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94179
A new first-party modeling for LLVM IR types in the LLVM dialect has been
developed in parallel to the existing modeling based on wrapping LLVM `Type *`
instances. It resolves the long-standing problem of modeling identified
structure types, including recursive structures, and enables future removal of
LLVMContext and related locking mechanisms from LLVMDialect.
This commit only switches the modeling by (a) renaming LLVMTypeNew to LLVMType,
(b) removing the old implementaiton of LLVMType, and (c) updating the tests. It
is intentionally minimal. Separate commits will remove the infrastructure built
for the transition and update API uses where appropriate.
Depends On D85020
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85021
Summary:
This is based on the use of code constantly checking for an attribute on
a model and instead represents the distinct operaion with a different
op. Instead, this op can be used to provide better filtering.
Reverts "Revert "[mlir] Create a gpu.module operation for the GPU Dialect.""
This reverts commit ac446302ca4145cdc89f377c0c364c29ee303be5 after
fixing internal Google issues.
This additionally updates ROCDL lowering to use the new gpu.module.
Reviewers: herhut, mravishankar, antiagainst, nicolasvasilache
Subscribers: jholewinski, mgorny, mehdi_amini, jpienaar, burmako, shauheen, csigg, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits, mravishankar, rriddle, antiagainst, bkramer
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72921
Summary:
This is based on the use of code constantly checking for an attribute on
a model and instead represents the distinct operaion with a different
op. Instead, this op can be used to provide better filtering.
Reviewers: herhut, mravishankar, antiagainst, rriddle
Reviewed By: herhut, antiagainst, rriddle
Subscribers: liufengdb, aartbik, jholewinski, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72336
This function-like operation allows one to define functions that have wrapped
LLVM IR function type, in particular variadic functions. The operation was
added in parallel to the existing lowering flow, this commit only switches the
flow to use it.
Using a custom function type makes the LLVM IR dialect type system more
consistent and avoids complex conversion rules for functions that previously
had to use the built-in function type instead of a wrapped LLVM IR dialect type
and perform conversions during the analysis.
PiperOrigin-RevId: 273910855
Originally, we were attaching attributes containing CUBIN blobs to the kernel
function called by `gpu.launch_func`. This kernel is now contained in a nested
module that is used as a compilation unit. Attach compiled CUBIN blobs to the
module rather than to the function since we were compiling the module. This
also avoids duplication of the attribute on multiple kernels within the same
module.
PiperOrigin-RevId: 273497303
Roll forward of commit 5684a12.
When outlining GPU kernels, put the kernel function inside a nested module. Then use a nested pipeline to generate the cubins, independently per kernel. In a final pass, move the cubins back to the parent module.
PiperOrigin-RevId: 270639748
When outlining GPU kernels, put the kernel function inside a nested module. Then use a nested pipeline to generate the cubins, independently per kernel. In a final pass, move the cubins back to the parent module.
PiperOrigin-RevId: 269987720
The actual transformation from PTX source to a CUDA binary is now factored out,
enabling compiling and testing the transformations independently of a CUDA
runtime.
MLIR has still to be built with NVPTX target support for the conversions to be
built and tested.
PiperOrigin-RevId: 255167139