Clean up corner cases related to elemental tensor / buffer type return values that would previously fail.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D105857
Previously, linalg bufferization always had to be conservative at function boundaries and assume the most dynamic strided memref layout.
This revision introduce the mechanism to specify a linalg.buffer_layout function argument attribute that carries an affine map used to set a less pessimistic layout.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D105859
Integral AND and OR follow the simple conjunction and disjuction rules
for lattice building. This revision also completes some of the Merge
refactoring by moving the remainder parts that are merger specific from
sparsification into utils files.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D105851
Pool operations perform the same shape propagation. Included the shape
propagation and tests for these avg_pool2d and max_pool2d.
Differential Revision: https://reviews.llvm.org/D105665
Right now, we only accept x/c with nonzero c, since this
conceptually can be treated as a x*(1/c) conjunction for both
FP and INT as far as lattice computations go. The codegen
keeps the division though to preserve precise semantics.
See discussion:
https://llvm.discourse.group/t/sparse-tensors-in-mlir/3389/28
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D105731
Previously, comprehensive bufferization of scf.yield did not have enough information
to detect whether an enclosing scf::for bbargs would bufferize to a buffer equivalent
to that of the matching scf::yield operand.
As a consequence a separate sanity check step would be required to determine whether
bufferization occured properly.
This late check would miss the case of calling a function in an loop.
Instead, we now pass and update aliasInfo during bufferization and it is possible to
imrpove bufferization of scf::yield and drop that post-pass check.
Add an example use case that was failing previously.
This slightly modifies the error conditions, which are also updated as part of this
revision.
Differential Revision: https://reviews.llvm.org/D105803
After the Math has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the Math
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D105702
The trait was inconsistent with the other broadcasting logic here. And
also fix printing here to use ? rather than -1 in the error.
Differential Revision: https://reviews.llvm.org/D105748
Use a modeling similar to SCF ParallelOp to support arbitrary parallel
reductions. The two main differences are: (1) reductions are named and declared
beforehand similarly to functions using a special op that provides the neutral
element, the reduction code and optionally the atomic reduction code; (2)
reductions go through memory instead because this is closer to the OpenMP
semantics.
See https://llvm.discourse.group/t/rfc-openmp-reduction-support/3367.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D105358
LLVM IR allows globals with external linkage to have initializers, including
undef. The translation was incorrectly using undef as a indicator that the
initializer should be ignored in translation, leading to the impossibility to
create an external global with an explicit undef initializer. Fix this and use
nullptr as a marker instead.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D105631
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: herhut, silvas
Differential Revision: https://reviews.llvm.org/D105625
`GeneralizePadTensorOpPattern` might generate `tensor.dim` op so the
TensorDialect should be marked legal. This pattern should also
transform all `linalg.pad_tensor` ops so mark those as illegal. Those
changes are missed from a previous change in
https://reviews.llvm.org/D105293
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D105642
This reverts commit 6c0fd4db79.
This simple implementation is unfortunately not extensible and needs to be reverted.
The extensible way should be to extend https://reviews.llvm.org/D104321.
Introduce the exp and log function in OpDSL. Add the soft plus operator to test the emitted IR in Python and C++.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D105420
Verify the number of results matches exactly the number of output tensors. Simplify the FillOp verification since part of it got redundant.
Differential Revision: https://reviews.llvm.org/D105427
Simplify vector unrolling pattern to be more aligned with rest of the
patterns and be closer to vector distribution.
The new implementation uses ExtractStridedSlice/InsertStridedSlice
instead of the Tuple ops. After this change the ops based on Tuple don't
have any more used so they can be removed.
This allows removing signifcant amount of dead code and will allow
extending the unrolling code going forward.
Differential Revision: https://reviews.llvm.org/D105381
Add the rewrite of PadTensorOp to InitTensor + InsertSlice before the
bufferization analysis starts.
This is exercised via a more advanced integration test.
Since the new behavior triggers folding, 2 tests need to be updated.
One of those seems to exhibit a folding issue with `switch` and is modified.
Differential Revision: https://reviews.llvm.org/D105549
Refactor the original code to rewrite a PadTensorOp into a
sequence of InitTensorOp, FillOp and InsertSliceOp without
vectorization by default. `GenericPadTensorOpVectorizationPattern`
provides a customized OptimizeCopyFn to vectorize the
copying step.
Reviewed By: silvas, nicolasvasilache, springerm
Differential Revision: https://reviews.llvm.org/D105293
The `bufferizesToMemoryRead` condition was too optimistics in the case
of operands that map to a block argument.
This is the case for ForOp and TiledLoopOp.
For such ops, forward the call to all uses of the matching BBArg.
Differential Revision: https://reviews.llvm.org/D105540
When an affine.if operation is returning/yielding results and has a
trivially true or false condition, then its 'then' or 'else' block,
respectively, is promoted to the affine.if's parent block and then, the
affine.if operation is replaced by the correct results/yield values.
Relevant test cases are also added.
Signed-off-by: Srishti Srivastava <srishti.srivastava@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D105418
Split out GPU ops library from GPU transforms. This allows libraries to
depend on GPU Ops without needing/building its transforms.
Differential Revision: https://reviews.llvm.org/D105472
Fix FlatAffineConstraints::getConstantBoundOnDimSize to ensure that
returned bounds on dim size are always non-negative regardless of the
constraints on that dimension. Add an assertion at the user.
Differential Revision: https://reviews.llvm.org/D105171
This changes the custom syntax of the emitc.include operation for standard includes.
Reviewed By: marbre
Differential Revision: https://reviews.llvm.org/D105281
Opaque attributes that currently contain string literals can't currently be properly roundtripped as they are not printed as escaped strings. This leads to incorrect tokens being generated and the parser to almost certainly fail. This patch simply uses llvm::printEscapedString from LLVM. It escapes all non printable characters and quotes to \xx hex literals, and backslashes to two backslashes. This syntax is supported by MLIRs Lexer as well. The same function is also currently in use for the same purpose in printSymbolReference, printAttribute for StringAttr and many more in AsmPrinter.cpp.
Differential Revision: https://reviews.llvm.org/D105405
Different constraints may share the same predicate, in this case, we
will generate duplicate ODS verification function.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D104369
This revision extends the sparse compiler support from fp/int addition and multiplication to fp/int negation and subtraction, thereby increasing the scope of sparse kernels that can be compiled.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D105306
Fusion by linearization should not happen when
- The reshape is expanding and it is a consumer
- The reshape is collapsing and is a producer.
The bug introduced in this logic by some recent refactoring resulted
in a crash.
To enforce this (negetive) use case, add a test that reproduces the
error and verifies the fix.
Differential Revision: https://reviews.llvm.org/D104970
Add the min operation to OpDSL and introduce a min pooling operation to test the implementation. The patch is a sibling of the max operation patch https://reviews.llvm.org/D105203 and the min operation is again lowered to a compare and select pair.
Differential Revision: https://reviews.llvm.org/D105345
Introduce an integration test folder in the test/python subfolder and move the opsrun.py test into the newly created folder. The test verifies named operations end-to-end using both the yaml and the python path.
Differential Revision: https://reviews.llvm.org/D105276
Add the max operation to the OpDSL and introduce a max pooling operation to test the implementation. As MLIR has no builtin max operation, the max function is lowered to a compare and select pair.
Differential Revision: https://reviews.llvm.org/D105203
Added InferReturnTypeComponents for NAry operations, reshape, and reverse.
With the additional tosa-infer-shapes pass, we can infer/propagate shapes
across a set of TOSA operations. Current version does not modify the
FuncOp type by inserting an unrealized conversion cast prior to any new
non-matchin returns.
Differential Revision: https://reviews.llvm.org/D105312
Affine scalar replacement (and other affine passes, though not fixed here) don't properly handle operations with nested regions. This patch fixes the pass and two affine utilities to function properly given a non-affine internal region
This patch prevents the pass from throwing an internal compiler error when running on the added test case.
Differential Revision: https://reviews.llvm.org/D105058