Summary:
This kill various depreacated API related to attribute :
- The deprecated C API attribute based on LLVMAttribute enum.
- The Raw attribute set format (planned to be removed in 4.0).
Reviewers: bkramer, echristo, mehdi_amini, void
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23039
llvm-svn: 286062
Summary:
While woring on mapping attributes in the C API, it clearly appeared that the recent changes in the API on the C++ side left Function and Call/Invoke with an attribute API that grew in an ad hoc manner. This makes it difficult to work with it, because one doesn't know which overloads exists and which do not.
Make sure that getter/setter function exists for both enum and string version. Remove inconsistent getter/setter, unless they have many callsites.
This should make it easier to work with attributes in the future.
This doesn't change how attribute works.
Reviewers: bkramer, whitequark, mehdi_amini, void
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21514
llvm-svn: 281019
If an attribute name has special characters such as '\01', it is not
properly printed in LLVM assembly language format. Since the format
expects the special characters are printed as it is, it has to contain
escape characters to make it printable.
Before:
attributes #0 = { ... "counting-function"="^A__gnu_mcount_nc" ...
After:
attributes #0 = { ... "counting-function"="\01__gnu_mcount_nc" ...
Reviewers: hfinkel, rengolin, rjmccall, compnerd
Subscribers: nemanjai, mcrosier, hans, shenhan, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D23792
llvm-svn: 280357
This patch changes LLVM_CONSTEXPR variable declarations to const
variable declarations, since LLVM_CONSTEXPR expands to nothing if the
current compiler doesn't support constexpr. In all of the changed
cases, it looks like the code intended the variable to be const instead
of sometimes-constexpr sometimes-not.
llvm-svn: 279696
In order to make the optimizer smarter about using the 'returned' argument
attribute (generally, but motivated by my llvm.noalias intrinsic work), add a
utility function to Call/InvokeInst, and CallSite, to make it easy to get the
returned call argument (when one exists).
P.S. There is already an unfortunate amount of code duplication between
CallInst and InvokeInst, and this adds to it. We should probably clean that up
separately.
Differential Revision: http://reviews.llvm.org/D22204
llvm-svn: 275031
Summary:
This complements the earlier addition of IntrWriteMem and IntrWriteArgMem
LLVM intrinsic properties, see D18291.
Also start using the attribute for memset, memcpy, and memmove intrinsics,
and remove their special-casing in BasicAliasAnalysis.
Reviewers: reames, joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18714
llvm-svn: 274485
Summary: As per title. This completes the C API Attribute support.
Reviewers: Wallbraker, whitequark, echristo, rafael, jyknight
Subscribers: mehdi_amini
Differential Revision: http://reviews.llvm.org/D21365
llvm-svn: 272811
Summary: The current naming not only doesn't convey the meaning of what this does, but worse, it convey the wrong meaning. This was a major source of confusion understanding the code, so I'm applying the boy scout rule here and making it better after I leave.
Reviewers: void, bkramer, whitequark
Differential Revision: http://reviews.llvm.org/D21264
llvm-svn: 272725
td_type is std::pair<std::string, std::string>, but the map returns
elements of std::pair<const std::string, std::string>. In well-designed
languages like C++ that yields an implicit copy perfectly hidden by
constref's lifetime extension. Just use auto, the typedef obscured the
real type anyways.
Found with a little help from clang-tidy's
performance-implicit-cast-in-loop.
llvm-svn: 272519
`allocsize` is a function attribute that allows users to request that
LLVM treat arbitrary functions as allocation functions.
This patch makes LLVM accept the `allocsize` attribute, and makes
`@llvm.objectsize` recognize said attribute.
The review for this was split into two patches for ease of reviewing:
D18974 and D14933. As promised on the revisions, I'm landing both
patches as a single commit.
Differential Revision: http://reviews.llvm.org/D14933
llvm-svn: 266032
Add StackProtector to SafeStack. This adds limited protection against
data corruption in the caller frame. Current implementation treats
all stack protector levels as -fstack-protector-all.
llvm-svn: 266004
We were using array_pod_sort on an array of type 'Attribute', which
wraps a pointer to AttributeImpl. For the most part this didn't matter
because the printing code prints enum attributes in a defined order, but
integer attributes such as 'align' and 'dereferenceable' were not
ordered.
Furthermore, AttributeImpl::operator< was broken for integer attributes.
An integer attribute is a kind and an integer value, and both pieces
need to be compared.
By fixing the comparison operator, we can go back to std::sort, and
things look good now. This should fix clang arm-swiftcall.c test
failures on Windows.
llvm-svn: 265361
A ``swifterror`` attribute can be applied to a function parameter or an
AllocaInst.
This commit does not include any target-specific change. The target-specific
optimization will come as a follow-up patch.
Differential Revision: http://reviews.llvm.org/D18092
llvm-svn: 265189
The majority of attribute queries checks for the existence of an enum
attribute in the FunctionIndex slot. We only have 48 of those and can
therefore summarize them in an uint64_t bitset which measurably improves
compile time.
Differential Revision: http://reviews.llvm.org/D16618
llvm-svn: 259252
The majority of queries just checks for the existince of an enum
attribute. We only have 48 of those and can summaryiz them in an
uint64_t bitfield so we can avoid searching the list. This improves
"opt" compile time by 1-4% in my measurements.
Differential Revision: http://reviews.llvm.org/D16617
llvm-svn: 259251
This reapplies r256277 with two changes:
- In emitFnAttrCompatCheck, change FuncName's type to std::string to fix
a use-after-free bug.
- Remove an unnecessary install-local target in lib/IR/Makefile.
Original commit message for r252949:
Provide a way to specify inliner's attribute compatibility and merging
rules using table-gen. NFC.
This commit adds new classes CompatRule and MergeRule to Attributes.td,
which are used to generate code to check attribute compatibility and
merge attributes of the caller and callee.
rdar://problem/19836465
llvm-svn: 256304
This reapplies r252990 and r252949. I've added member function getKind
to the Attr classes which returns the enum or string of the attribute.
Original commit message for r252949:
Provide a way to specify inliner's attribute compatibility and merging
rules using table-gen. NFC.
This commit adds new classes CompatRule and MergeRule to Attributes.td,
which are used to generate code to check attribute compatibility and
merge attributes of the caller and callee.
rdar://problem/19836465
llvm-svn: 256277
Summary:
This patch introduces two new function attributes
InaccessibleMemOnly: This attribute indicates that the function may only access memory that is not accessible by the program/IR being compiled. This is a weaker form of ReadNone.
inaccessibleMemOrArgMemOnly: This attribute indicates that the function may only access memory that is either not accessible by the program/IR being compiled, or is pointed to by its pointer arguments. This is a weaker form of ArgMemOnly
Test cases have been updated. This revision uses this (d001932f3a) as reference.
Reviewers: jmolloy, hfinkel
Subscribers: reames, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D15499
llvm-svn: 255778
time.
The new overloaded function is used when an attribute is added to a
large number of slots of an AttributeSet (for example, to function
parameters). This is much faster than calling AttributeSet::addAttribute
once per slot, because AttributeSet::getImpl (which calls
FoldingSet::FIndNodeOrInsertPos) is called only once per function
instead of once per slot.
With this commit, clang compiles a file which used to take over 22
minutes in just 13 seconds.
rdar://problem/23581000
Differential Revision: http://reviews.llvm.org/D15085
llvm-svn: 254491
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
This reapplies r252949. I've changed the type of FuncName to be
std::string instead of StringRef in emitFnAttrCompatCheck.
Original commit message for r252949:
Provide a way to specify inliner's attribute compatibility and merging
rules using table-gen. NFC.
This commit adds new classes CompatRule and MergeRule to Attributes.td,
which are used to generate code to check attribute compatibility and
merge attributes of the caller and callee.
rdar://problem/19836465
llvm-svn: 252990
rules using table-gen. NFC.
This commit adds new classes CompatRule and MergeRule to Attributes.td,
which are used to generate code to check attribute compatibility and
merge attributes of the caller and callee.
rdar://problem/19836465
llvm-svn: 252949
This attribute allows the compiler to assume that the function never recurses into itself, either directly or indirectly (transitively). This can be used among other things to demote global variables to locals.
llvm-svn: 252282
This is intended to help support the idiom of a class that has some
other objects (or multiple arrays of different types of objects)
appended on the end, which is used quite heavily in clang.
Differential Revision: http://reviews.llvm.org/D11272
llvm-svn: 244164
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis.
Differential Revision: http://reviews.llvm.org/D10398
llvm-svn: 241979
This patch adds the safe stack instrumentation pass to LLVM, which separates
the program stack into a safe stack, which stores return addresses, register
spills, and local variables that are statically verified to be accessed
in a safe way, and the unsafe stack, which stores everything else. Such
separation makes it much harder for an attacker to corrupt objects on the
safe stack, including function pointers stored in spilled registers and
return addresses. You can find more information about the safe stack, as
well as other parts of or control-flow hijack protection technique in our
OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf)
and our project website (http://levee.epfl.ch).
The overhead of our implementation of the safe stack is very close to zero
(0.01% on the Phoronix benchmarks). This is lower than the overhead of
stack cookies, which are supported by LLVM and are commonly used today,
yet the security guarantees of the safe stack are strictly stronger than
stack cookies. In some cases, the safe stack improves performance due to
better cache locality.
Our current implementation of the safe stack is stable and robust, we
used it to recompile multiple projects on Linux including Chromium, and
we also recompiled the entire FreeBSD user-space system and more than 100
packages. We ran unit tests on the FreeBSD system and many of the packages
and observed no errors caused by the safe stack. The safe stack is also fully
binary compatible with non-instrumented code and can be applied to parts of
a program selectively.
This patch is our implementation of the safe stack on top of LLVM. The
patches make the following changes:
- Add the safestack function attribute, similar to the ssp, sspstrong and
sspreq attributes.
- Add the SafeStack instrumentation pass that applies the safe stack to all
functions that have the safestack attribute. This pass moves all unsafe local
variables to the unsafe stack with a separate stack pointer, whereas all
safe variables remain on the regular stack that is managed by LLVM as usual.
- Invoke the pass as the last stage before code generation (at the same time
the existing cookie-based stack protector pass is invoked).
- Add unit tests for the safe stack.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6094
llvm-svn: 239761
This makes use of the new API which can remove attributes from a set given a builder.
This is much faster than creating a temporary set and reduces llc time by about 0.3% which was all spent creating temporary attributes sets on the context.
llvm-svn: 236668
Prior to this change we would have to construct a temporary AttributeSet (which isn't temporary at all given that its allocated on the context), just to contain the attributes in the builder, then call remove on that.
Now we can just remove any attributes from the (lightweight and really temporary) builder itself.
Will be used in a future commit to remove some temporary attributes sets.
llvm-svn: 236666
Summary:
If a pointer is marked as dereferenceable_or_null(N), LLVM assumes it
is either `null` or `dereferenceable(N)` or both. This change only
introduces the attribute and adds a token test case for the `llvm-as`
/ `llvm-dis`. It does not hook up other parts of the optimizer to
actually exploit the attribute -- those changes will come later.
For pointers in address space 0, `dereferenceable(N)` is now exactly
equivalent to `dereferenceable_or_null(N)` && `nonnull`. For other
address spaces, `dereferenceable(N)` is potentially weaker than
`dereferenceable_or_null(N)` && `nonnull` (since we could have a null
`dereferenceable(N)` pointer).
The motivating case for this change is Java (and other managed
languages), where pointers are either `null` or dereferenceable up to
some usually known-at-compile-time constant offset.
Reviewers: rafael, hfinkel
Reviewed By: hfinkel
Subscribers: nicholas, llvm-commits
Differential Revision: http://reviews.llvm.org/D8650
llvm-svn: 235132
The "dereferenceable" attribute cannot be added via .addAttribute(),
since it also expects a size in bytes. AttrBuilder#addAttribute or
AttributeSet#addAttribute is wrapped by classes Function, InvokeInst,
and CallInst. Add corresponding wrappers to
AttrBuilder#addDereferenceableAttr.
Having done this, propagate the dereferenceable attribute via
gc.relocate, adding a test to exercise it. Note that -datalayout is
required during execution over and above -instcombine, because
InstCombine only optionally requires DataLayoutPass.
Differential Revision: http://reviews.llvm.org/D7510
llvm-svn: 229265