live case of a switch statement when switching on a constant. This is terribly
limited, but enough to handle the trivial example included. Before we would
emit:
define void @test1(i32 %i) nounwind {
entry:
%i.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
switch i32 1, label %sw.epilog [
i32 1, label %sw.bb
]
sw.bb: ; preds = %entry
%tmp = load i32* %i.addr, align 4
%inc = add nsw i32 %tmp, 1
store i32 %inc, i32* %i.addr, align 4
br label %sw.epilog
sw.epilog: ; preds = %sw.bb, %entry
switch i32 0, label %sw.epilog3 [
i32 1, label %sw.bb1
]
sw.bb1: ; preds = %sw.epilog
%tmp2 = load i32* %i.addr, align 4
%add = add nsw i32 %tmp2, 2
store i32 %add, i32* %i.addr, align 4
br label %sw.epilog3
sw.epilog3: ; preds = %sw.bb1, %sw.epilog
ret void
}
now we emit:
define void @test1(i32 %i) nounwind {
entry:
%i.addr = alloca i32, align 4
store i32 %i, i32* %i.addr, align 4
%tmp = load i32* %i.addr, align 4
%inc = add nsw i32 %tmp, 1
store i32 %inc, i32* %i.addr, align 4
ret void
}
This improves -O0 compile time (less IR to generate and shove through the code
generator) and the clever linux kernel people found a way to fail to build if we
don't do this optimization. This step isn't enough to handle the kernel case
though.
llvm-svn: 126597
nested-name-specifier, e.g.,
T::template apply<U>::
represent the dependent template name specialization as a
DependentTemplateSpecializationType, rather than a
TemplateSpecializationType with a dependent TemplateName.
llvm-svn: 126593
specifiers such as
typename T::template apply<U>
Previously, we would turn T::template apply<U> into a
TemplateSpecializationType. Then, we'd reprocess that
TemplateSpecializationType and turn it into either a
TemplateSpecializationType wrapped in an ElaboratedType (when we could
resolve "apply" to a template declaration) or a
DependentTemplateSpecializationType. We now produce the same ASTs but
without generating the intermediate TemplateSpecializationType.
The end goal here is to avoid generating TemplateSpecializationTypes
with dependent template-names, ever. We're not there yet.
llvm-svn: 126589
1. Inform users of ADDEs with two 0 operands that it never sets carry
2. Fold other ADDs or ADDCs into the ADDE if possible
It would be neat if we could do the same thing for SETCC+ADD eventually, but we can't do that in target independent code.
llvm-svn: 126557
This successfully performs constructor lookup and verifies that a
delegating initializer is the only initializer present.
This does not perform loop detection in the initialization, but it also
doesn't codegen delegating constructors at all, so this won't cause
runtime infinite loops yet.
llvm-svn: 126552