While we can already transform A | (A ^ B) into A | B, things get bad
once we have (A ^ B) | (A ^ B ^ Cst) because reassociation will morph
this into (A ^ B) | ((A ^ Cst) ^ B). Our existing patterns fail once
this happens.
To fix this, we add a new pattern which looks through the tree of xor
binary operators to see that, in fact, there exists a redundant xor
operation.
What follows bellow is a correctness proof of the transform using CVC3.
$ cat t.cvc
A, B, C : BITVECTOR(64);
QUERY BVXOR(A, B) | BVXOR(BVXOR(B, C), A) = BVXOR(A, B) | C;
QUERY BVXOR(BVXOR(A, C), B) | BVXOR(A, B) = BVXOR(A, B) | C;
QUERY BVXOR(A, B) & BVXOR(BVXOR(B, C), A) = BVXOR(A, B) & ~C;
QUERY BVXOR(BVXOR(A, C), B) & BVXOR(A, B) = BVXOR(A, B) & ~C;
$ cvc3 < t.cvc
Valid.
Valid.
Valid.
Valid.
llvm-svn: 214342
The lifetime intrinsics need some work in order to make it clear which
optimizations are or are not valid.
For now dropping this optimization avoids a miscompilation.
Patch by Björn Steinbrink.
llvm-svn: 214336
This patch adds an explicit triple to the test case introduced by r214322. This
should fix build failueres that are occuring on bots that are cross building.
llvm-svn: 214330
DAGCombine may choose to rewrite graphs where two loads feed a select into
graphs where a select of two addresses feed a load. While it sanity checks the
loads to make sure they are broadly equivalent it currently just uses the
alignment restriction of the left node. In cases where the right node has
stronger alignment requiresment this may lead to bad codegen, such as generating
an aligned load where an unaligned load is required. This patch makes the
combine generate a load with an alignment that is the same as whichever is more
restrictive of the two alignments.
Tests included.
rdar://17762530
llvm-svn: 214322
When predicting use-list order, we visit functions in reverse order
followed by `GlobalValue`s and write out use-lists at the first
opportunity. In the reader, this will translate to *after* the last use
has been added.
For this to work, we actually need to descend into `GlobalValue`s.
Added a targeted test in `use-list-order.ll` and `RUN` lines to the
newly passing tests in `test/Bitcode`.
There are two remaining failures in `test/Bitcode`:
- blockaddress.ll: I haven't thought through how to model the way
block addresses change the order of use-lists (or how to work around
it).
- metadata-2.ll: There's an old-style `@llvm.used` global array here
that I suspect the .ll parser isn't upgrading properly. When it
round-trips through bitcode, the .bc reader *does* upgrade it, so
the extra variable (`i8* null`) has an extra use, and the shuffle
vector doesn't match.
I think the fix is to upgrade old-style global arrays (or reject
them?) in the .ll parser.
This is part of PR5680.
llvm-svn: 214321
the jump instruction table pass. First, the verifier is already built
into all the tools. The test case is adapted to just run llvm-as
demonstrating that we still catch the broken module. Second, the
verifier is *extremely* slow. This was responsible for very significant
compile time regressions.
If you have deployed a Clang binary anywhere from r210280 to this
commit, you really want to re-deploy.
llvm-svn: 214287
We now (1) correctly decode the branch immediate, (2) modify the immediate to
corretly treat it as PC-rel, and (3) properly populate the stub entry.
Previously we had been doing each of these wrong.
<rdar://problem/17750739>
llvm-svn: 214285
Fix the missing case in ScalarizeVectorResult() that was exposed with
libclcore.bc in Android.
Differential Revision: http://reviews.llvm.org/D4645
llvm-svn: 214266
r214242 was subtle enough it really deserves a targeted test with
comments. This adds some global variables that trigger the relevant
code path. Sorry this wasn't committed with the fix.
llvm-svn: 214243
To avoid unnecessary forward references, the reader doesn't process
initializers of `GlobalValue`s until after the constant pool has been
processed, and then in reverse order. Model this when predicting
use-list order. This gets two more Bitcode tests passing with
`llvm-uselistorder`.
Part of PR5680.
llvm-svn: 214242
This moves some tests around to make it clearer what's being tested,
and adds very rudimentary comment syntax to the text input format to
make specifying this kind of test a little bit simpler.
llvm-svn: 214235
full paths for its first argument.
This allows us to remove the annoying sed lines in the test cases, and write
direct references to file names in stub_addr calls (rather than <filename>
placeholders).
llvm-svn: 214211
Per feedback on r214111, we are going to use null to represent unspecified
parameter. If the type array is {null}, it means a function that returns void;
If the type array is {null, null}, it means a variadic function that returns
void. In summary if we have more than one element in the type array and the last
element is null, it is a variadic function.
rdar://17628609
llvm-svn: 214189
The test being performed is just an approximation anyway, so it really
shouldn't crash when things don't go entirely as expected.
Should fix PR20474.
llvm-svn: 214177
We need to make sure we use the softened version of all appropriate operands in
the libcall, or things go horribly wrong. This may entail actually executing a
1-stage softening.
llvm-svn: 214175
Fix the sort of expected order in the reader to correctly return `false`
when comparing a `Use` against itself.
This was caught by test/Bitcode/binaryIntInstructions.3.2.ll, so I'm
adding a `RUN` line using `llvm-uselistorder` for every test in
`test/Bitcode` that passes.
A few tests still fail, so I'll investigate those next.
This is part of PR5680.
llvm-svn: 214157
The enum types array by design contains pointers to MDNodes rather than DIRefs.
Unique them when handling the enum types in DwarfDebug.
rdar://17628609
llvm-svn: 214139
DITypeArray is an array of DITypeRef, at its creation, we will create
DITypeRef (i.e use the identifier if the type node has an identifier).
This is the last patch to unique the type array of a subroutine type.
rdar://17628609
llvm-svn: 214132
Predict and serialize use-list order in bitcode. This makes the option
`-preserve-bc-use-list-order` work *most* of the time, but this is still
experimental.
- Builds a full value-table up front in the writer, sets up a list of
use-list orders to write out, and discards the table. This is a
simpler first step than determining the order from the various
overlapping IDs of values on-the-fly.
- The shuffles stored in the use-list order list have an unnecessarily
large memory footprint.
- `blockaddress` expressions cause functions to be materialized
out-of-order. For now I've ignored this problem, so use-list orders
will be wrong for constants used by functions that have block
addresses taken. There are a couple of ways to fix this, but I
don't have a concrete plan yet.
- When materializing functions lazily, the use-lists for constants
will not be correct. This use case is out of scope: what should the
use-list order be, if it's incomplete?
This is part of PR5680.
llvm-svn: 214125
These are only used when the 'ld' in the path is gold and the plugin has
been built, but it is already a start to make sure we don't regress features
that cannot be tested with llvm-lto.
llvm-svn: 214058
The subtarget information is the ultimate source of truth for the feature set
that is enabled at this point. We would previously not propagate the feature
information to the subtarget. While this worked for the most part (features
would be enabled/disabled as requested), if another operation that changed the
feature bits was encountered (such as a mode switch via a .arm or .thumb
directive), we would end up resetting the behaviour of the architectural
extensions.
Handling this properly requires a slightly more complicated handling. We need
to check if the feature is now being toggled. If so, only then do we toggle the
features. In return, we no longer have to calculate the feature bits ourselves.
The test changes are mostly to the diagnosis, which is now more uniform (a nice
side effect!). Add an additional test to ensure that we handle this case
properly.
Thanks to Nico Weber for alerting me to this issue!
llvm-svn: 214057
Rename to allowsMisalignedMemoryAccess.
On R600, 8 and 16 byte accesses are mostly OK with 4-byte alignment,
and don't need to be split into multiple accesses. Vector loads with
an alignment of the element type are not uncommon in OpenCL code.
llvm-svn: 214055
'J' represents a negative number suitable for an add/sub alias
instruction, but while preparing it to become an int64_t we were
mangling the sign extension. So "i32 -1" became 0xffffffffLL, for
example.
Should fix one half of PR20456.
llvm-svn: 214052
instructions in the legalized DAG, and leverage it to combine long
sequences of instructions to PSHUFB.
Eventually, the other x86-instruction-specific shuffle combines will
probably all be driven out of this routine. But the real motivation is
to detect after we have fully legalized and optimized a shuffle to the
minimal number of x86 instructions whether it is profitable to replace
the chain with a fully generic PSHUFB instruction even though doing so
requires either a load from a constant pool or tying up a register with
the mask.
While the Intel manuals claim it should be used when it replaces 5 or
more instructions (!!!!) my experience is that it is actually very fast
on modern chips, and so I've gon with a much more aggressive model of
replacing any sequence of 3 or more instructions.
I've also taught it to do some basic canonicalization to special-purpose
instructions which have smaller encodings than their generic
counterparts.
There are still quite a few FIXMEs here, and I've not yet implemented
support for lowering blends with PSHUFB (where its power really shines
due to being able to zero out lanes), but this starts implementing real
PSHUFB support even when using the new, fancy shuffle lowering. =]
llvm-svn: 214042
over each node in the worklist prior to combining.
This allows the combiner to produce new nodes which need to go back
through legalization. This is particularly useful when generating
operands to target specific nodes in a post-legalize DAG combine where
the operands are significantly easier to express as pre-legalized
operations. My immediate use case will be PSHUFB formation where we need
to build a constant shuffle mask with a build_vector node.
This also refactors the relevant functionality in the legalizer to
support this, and updates relevant tests. I've spoken to the R600 folks
and these changes look like improvements to them. The avx512 change
needs to be investigated, I suspect there is a disagreement between the
legalizer and the DAG combiner there, but it seems a minor issue so
leaving it to be re-evaluated after this patch.
Differential Revision: http://reviews.llvm.org/D4564
llvm-svn: 214020
The tale starts with r212808 which attempted to fix inversion of the low
and high bits when lowering MUL_LOHI. Sadly, that commit did not include
any positive test cases, and just removed some operations from a test
case where the actual logic being changed isn't fully visible from the
test.
What this commit did was two things. First, it reversed the low and high
results in the formation of the MERGE_VALUES node for the multiple
results. This is entirely correct.
Second it changed the shuffles for extracting the low and high
components from the i64 results of the multiplies to extract them
assuming a big-endian-style encoding of the multiply results. This
second change is wrong. There is no big-endian encoding in x86, the
results of the multiplies are normal v2i64s: when cast to v4i32, the low
i32s are at offsets 0 and 2, and the high i32s are at offsets 1 and 3.
However, the first change wasn't enough to actually fix the bug, which
is (I assume) why the second change was also made. There was another bug
in the MERGE_VALUES formation: we weren't using a VTList, and so were
getting a single result node! When grabbing the *second* result from the
node, we got... well.. colud be anything. I think this *appeared* to
invert things, but had to be causing other problems as well.
Fortunately, I fixed the MERGE_VALUES issue in r213931, so we should
have been fine, right? NOOOPE! Because the core bug was never addressed,
the test in vector-idiv failed when I fixed the MERGE_VALUES node.
Because there are essentially no docs for this node, I had to guess at
how to fix it and tried swapping the operands, restoring the order of
the original code before r212808. While this "fixed" the test case (in
that we produced the write instructions) we were still extracting the
wrong elements of the i64s, and thus PR20355 was still broken.
This commit essentially reverts the big-endian-style extraction part of
r212808 and goes back to the original masks which were correct. Now that
the MERGE_VALUES node formation is also correct, everything works. I've
also included a more detailed test from PR20355 to make sure this stays
fixed.
llvm-svn: 214011
The clever way to implement signed multiplication with unsigned *is
already implemented* and tested and working correctly. The bug is
somewhere else. Re-investigating.
This will teach me to not scroll far enough to read the code that did
what I thought needed to be done.
llvm-svn: 214009
signed multiplication is requested. While there is not a difference in
the *low* half of the result, the *high* half (used specifically to
implement the signed division by these constants) certainly is used. The
test case I've nuked was actively asserting wrong code.
There is a delightful solution to doing signed multiplication even when
we don't have it that Richard Smith has crafted, but I'll add the
machinery back and implement that in a follow-up patch. This at least
restores correctness.
llvm-svn: 214007
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
llvm-svn: 213973
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
llvm-svn: 213967
This commit implements the frameaddress intrinsic for the AArch64 architecture
in FastISel.
There were two test cases that pretty much tested the same, so I combined them
to a single test case.
Fixes <rdar://problem/17811834>
llvm-svn: 213959
Ugh. Turns out not even transformation passes link in how to read IR.
I sincerely believe the buildbots will finally agree with my system
after this though. (I don't really understand why all of this has been
working on my system, but not on all the buildbots.)
Create a new tool called llvm-uselistorder to use for verifying use-list
order. For now, just dump everything from the (now defunct)
-verify-use-list-order pass into the tool.
This might be a better way to test use-list order anyway.
Part of PR5680.
llvm-svn: 213957
This recommits r208930, r208933, and r208975 (by reverting r209338) and
reverts r209529 (the FIXME to readd this functionality once the tools
were fixed) now that DWP has been fixed to cope with a single section
for all fission type units.
Original commit message:
"Since type units in the dwo file are handled by a debug aware tool,
they don't need to leverage the ELF comdat grouping to implement
deduplication. Avoid creating all the .group sections for these as a
space optimization."
llvm-svn: 213956
Reverted by Eric Christopher (Thanks!) in r212203 after Bob Wilson
reported LTO issues. Duncan Exon Smith and Aditya Nandakumar helped
provide a reduced reproduction, though the failure wasn't too hard to
guess, and even easier with the example to confirm.
The assertion that the subprogram metadata associated with an
llvm::Function matches the scope data referenced by the DbgLocs on the
instructions in that function is not valid under LTO. In LTO, a C++
inline function might exist in multiple CUs and the subprogram metadata
nodes will refer to the same llvm::Function. In this case, depending on
the order of the CUs, the first intance of the subprogram metadata may
not be the one referenced by the instructions in that function and the
assertion will fail.
A test case (test/DebugInfo/cross-cu-linkonce-distinct.ll) is added, the
assertion removed and a comment added to explain this situation.
This was then reverted again in r213581 as it caused PR20367. The root
cause of this was the early exit in LiveDebugVariables meant that
spurious DBG_VALUE intrinsics that referenced dead variables were not
removed, causing an assertion/crash later on. The fix is to have
LiveDebugVariables strip all DBG_VALUE intrinsics in functions without
debug info as they're not needed anyway. Test case added to cover this
situation (that occurs when a debug-having function is inlined into a
nodebug function) in test/DebugInfo/X86/nodebug_with_debug_loc.ll
Original commit message:
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 213952
* Add CUs to the named CU node
* Add missing DW_TAG_subprogram nodes
* Add llvm::Functions to the DW_TAG_subprogram nodes
This cleans up the tests so that they don't break under a
soon-to-be-made change that is more strict about such things.
llvm-svn: 213951
This functionality is currently turned off by default.
Part of the motivation for introducing scoped-noalias metadata is to enable the
preservation of noalias parameter attribute information after inlining.
Sometimes this can be inferred from the code in the caller after inlining, but
often we simply lose valuable information.
The overall process if fairly simple:
1. Create a new unqiue scope domain.
2. For each (used) noalias parameter, create a new alias scope.
3. For each pointer, collect the underlying objects. Add a noalias scope for
each noalias parameter from which we're not derived (and has not been
captured prior to that point).
4. Add an alias.scope for each noalias parameter from which we might be
derived (or has been captured before that point).
Note that the capture checks apply only if one of the underlying objects is not
an identified function-local object.
llvm-svn: 213949
In the process of fixing the noalias parameter -> metadata conversion process
that will take place during inlining (which will be committed soon, but not
turned on by default), I have come to realize that the semantics provided by
yesterday's commit are not really what we want. Here's why:
void foo(noalias a, noalias b, noalias c, bool x) {
*q = x ? a : b;
*c = *q;
}
Generically, we know that *c does not alias with *a and with *b (so there is an
'and' in what we know we're not), and we know that *q might be derived from *a
or from *b (so there is an 'or' in what we know that we are). So we do not want
the semantics currently, where any noalias scope matching any alias.scope
causes a NoAlias return. What we want to know is that the noalias scopes form a
superset of the alias.scope list (meaning that all the things we know we're not
is a superset of all of things the other instruction might be).
Making that change, however, introduces a composibility problem. If we inline
once, adding the noalias metadata, and then inline again adding more, and we
append new scopes onto the noalias and alias.scope lists each time. But, this
means that we could change what was a NoAlias result previously into a MayAlias
result because we appended an additional scope onto one of the alias.scope
lists. So, instead of giving scopes the ability to have parents (which I had
borrowed from the TBAA implementation, but seems increasingly unlikely to be
useful in practice), I've given them domains. The subset/superset condition now
applies within each domain independently, and we only need it to hold in one
domain. Each time we inline, we add the new scopes in a new scope domain, and
everything now composes nicely. In addition, this simplifies the
implementation.
llvm-svn: 213948
Add a -verify-use-list-order pass, which shuffles use-list order, writes
to bitcode, reads back, and verifies that the (shuffled) order matches.
- The utility functions live in lib/IR/UseListOrder.cpp.
- Moved (and renamed) the command-line option to enable writing
use-lists, so that this pass can return early if the use-list orders
aren't being serialized.
It's not clear that this pass is the right direction long-term (perhaps
a separate tool instead?), but short-term it's a great way to test the
use-list order prototype. I've added an XFAIL-ed testcase that I'm
hoping to get working pretty quickly.
This is part of PR5680.
llvm-svn: 213945
assembly instructions.
This is necessary to ensure ARM assembler switches to Thumb mode before it
starts assembling the file level inline assembly instructions at the beginning
of a .s file.
<rdar://problem/17757232>
llvm-svn: 213924
Because the PowerPC vmrgh* and vmrgl* instructions have a built-in
big-endian bias, it is necessary to swap their inputs in little-endian
mode when using them to implement a vector shuffle. This was
previously missed in the vector LE implementation.
There was already logic to distinguish between unary and "normal"
vmrg* vector shuffles, so this patch extends that logic to use a third
option: "swapped" vmrg* vector shuffles that are used for little
endian in place of the "normal" ones.
I've updated the vec-shuffle-le.ll test to check for the expected
register ordering on the generated instructions.
This bug was discovered when testing the LE and ELFv2 patches for
safety if they were backported to 3.4. A different vectorization
decision was made in 3.4 than on mainline trunk, and that exposed the
problem. I've verified this fix takes care of that issue.
llvm-svn: 213915
The -print-file-name option in llvm-nm is to precede each symbol
with the object file it came from. While code for the parsing of this
option and its aliases existed there was no code to implement it.
llvm-svn: 213906
This tool's job is to dump the vtables inside object files. It is
currently limited to MS ABI vf- and vb-tables but it will eventually
support Itanium-style v-tables as well.
Differential Revision: http://reviews.llvm.org/D4584
llvm-svn: 213903
hint) the loop unroller replaces the llvm.loop.unroll.count metadata with
llvm.loop.unroll.disable metadata to prevent any subsequent unrolling
passes from unrolling more than the hint indicates. This patch fixes
an issue where loop unrolling could be disabled for other loops as well which
share the same llvm.loop metadata.
llvm-svn: 213900
which have successfully round-tripped through the combine phase, and use
this to ensure all operands to DAG nodes are visited by the combiner,
even if they are only added during the combine phase.
This is critical to have the combiner reach nodes that are *introduced*
during combining. Previously these would sometimes be visited and
sometimes not be visited based on whether they happened to end up on the
worklist or not. Now we always run them through the combiner.
This fixes quite a few bad codegen test cases lurking in the suite while
also being more principled. Among these, the TLS codegeneration is
particularly exciting for programs that have this in the critical path
like TSan-instrumented binaries (although I think they engineer to use
a different TLS that is faster anyways).
I've tried to check for compile-time regressions here by running llc
over a merged (but not LTO-ed) clang bitcode file and observed at most
a 3% slowdown in llc. Given that this is essentially a worst case (none
of opt or clang are running at this phase) I think this is tolerable.
The actual LTO case should be even less costly, and the cost in normal
compilation should be negligible.
With this combining logic, it is possible to re-legalize as we combine
which is necessary to implement PSHUFB formation on x86 as
a post-legalize DAG combine (my ultimate goal).
Differential Revision: http://reviews.llvm.org/D4638
llvm-svn: 213898
vector operation legalization with support for custom target lowering
and fallback to expand when it fails, and use this to implement sext and
anyext load lowering for x86 in a more principled way.
Previously, the x86 backend relied on a target DAG combine to "combine
away" sextload and extload nodes prior to legalization, or would expand
them during legalization with terrible code. This is particularly
problematic because the DAG combine relies on running over non-canonical
DAG nodes at just the right time to match several common and important
patterns. It used a combine rather than lowering because we didn't have
good lowering support, and to expose some tricks being employed to more
combine phases.
With this change it becomes a proper lowering operation, the backend
marks that it can lower these nodes, and I've added support for handling
the canonical forms that don't have direct legal representations such as
sextload of a v4i8 -> v4i64 on AVX1. With this change, our test cases
for this behavior continue to pass even after the DAG combiner beigns
running more systematically over every node.
There is some noise caused by this in the test suite where we actually
use vector extends instead of subregister extraction. This doesn't
really seem like the right thing to do, but is unlikely to be a critical
regression. We do regress in one case where by lowering to the
target-specific patterns early we were able to combine away extraneous
legal math nodes. However, this regression is completely addressed by
switching to a widening based legalization which is what I'm working
toward anyways, so I've just switched the test to that mode.
Differential Revision: http://reviews.llvm.org/D4654
llvm-svn: 213897
This patch minimizes the number of nops that must be emitted on X86 to satisfy
stackmap shadow constraints.
To minimize the number of nops inserted, the X86AsmPrinter now records the
size of the most recent stackmap's shadow in the StackMapShadowTracker class,
and tracks the number of instruction bytes emitted since the that stackmap
instruction was encountered. Padding is emitted (if it is required at all)
immediately before the next stackmap/patchpoint instruction, or at the end of
the basic block.
This optimization should reduce code-size and improve performance for people
using the llvm stackmap intrinsic on X86.
<rdar://problem/14959522>
llvm-svn: 213892
This target is identical to the Windows MSVC (and follows Microsoft ABI for C).
Correct the library call setup for this target. The same set of library calls
are missing on this environment.
llvm-svn: 213883
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
llvm-svn: 213864
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
llvm-svn: 213859
The ARM ARM prohibits STRH instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STRH instructions with unpredictable behavior.
llvm-svn: 213850
Use ComputeNumSignBits instead of checking for i8 / i16 which only
worked when AMDIL was lying about having legal i8 / i16.
If an integer is known to fit in 24-bits, we can
do division faster with float ops.
llvm-svn: 213843
This bug is introduced by r211144. The element of operand may be
smaller than the element of result, but previous commit can
only handle the contrary condition. This commit is to handle this
scenario and generate optimized codes like ZIP1.
llvm-svn: 213830
When we had a vector_shuffle where we had an input from each vector, we
could miscompile it because we were assuming the input from V2 wouldn't
be moved from where it was on the vector.
Added a test case.
llvm-svn: 213826
We use gep to access the global array "switch.table", and the table index
should be treated as unsigned. When the highest bit is 1, this commit
zero-extends the index to an integer type with larger size.
For a switch on i2, we used to generate:
%switch.tableidx = sub i2 %0, -2
getelementptr inbounds [4 x i64]* @switch.table, i32 0, i2 %switch.tableidx
It is incorrect when %switch.tableidx is 2 or 3. The fix is to generate
%switch.tableidx = sub i2 %0, -2
%switch.tableidx.zext = zext i2 %switch.tableidx to i3
getelementptr inbounds [4 x i64]* @switch.table, i32 0, i3 %switch.tableidx.zext
rdar://17735071
llvm-svn: 213815
It isn't reasonable to test storing things using undef pointers --
storing through those is at best "good luck" and really should be
transformed to "unreachable". Random changes in the combiner can
randomly break these tests for no good reason. I'm following up on the
original commit regarding the right long-term strategy here.
llvm-svn: 213810
While the subprogram map cache used by Dead Argument Elimination works
there, I made a mistake when reusing it for Argument Promotion in
r212128 because ArgPromo may transform functions more than once whereas
DAE transforms each function only once, removing all the dead arguments
in one go.
To address this, ensure that the map is updated after each argument
promotion.
In retrospect it might be a little wasteful to create a map of all
subprograms when only handling a single CGSCC, but the alternative is
walking the debug info for each function in the CGSCC that gets updated.
It's not clear to me what the right tradeoff is there, but since the
current tradeoff seems to be working OK (and the code to keep things
updated is very cheap), let's stick with that for now.
llvm-svn: 213805
Also the debug location I had here was bogus, describing the location of
the call site as in the callee - and unnecessary, so just drop it.
llvm-svn: 213803
The transform to constant fold unary operations with an AND across a
vector comparison applies when the constant is not a splat of a scalar
as well.
llvm-svn: 213800
The folding of unary operations through a vector compare and mask operation
is only safe if the unary operation result is of the same size as its input.
For example, it's not safe for [su]itofp from v4i32 to v4f64.
llvm-svn: 213799
Constant fold the lanes of the input constant build_vector individually
so we correctly handle when the vector elements are not all the same
constant value.
PR20394
llvm-svn: 213798
I used the wrong method to obtain the return type inside FinishCall. This fix
simply uses the return type from FastLowerCall, which we already determined to
be a valid type.
Reduced test case from Chad. Thanks.
llvm-svn: 213788
With optimizations disabled, we disable the isel patterns for mul.wide; but we
were still generating MULWIDE ISD nodes. Now, we only try to generate MULWIDE
ISD nodes in DAGCombine if the optimization level is not zero.
llvm-svn: 213773
The target-independent DAGcombiner will generate:
asr w1, X, #31 w1 = splat sign bit.
add X, X, w1, lsr #28 X = X + 0 or pow2-1
asr w0, X, asr #4 w0 = X/pow2
However, the add + shifts is expensive, so generate:
add w0, X, 15 w0 = X + pow2-1
cmp X, wzr X - 0
csel X, w0, X, lt X = (X < 0) ? X + pow2-1 : X;
asr w0, X, asr 4 w0 = X/pow2
llvm-svn: 213758
We were assuming all SBFX-like operations would have the shl/asr form, but
often when the field being extracted is an i8 or i16, we end up with a
SIGN_EXTEND_INREG acting on a shift instead. Simple enough to check for though.
llvm-svn: 213754
Although the final shifter operand is a rotate, this actually only matters for
the half-word extends when the amount == 24. Otherwise folding a shift in is
just as good.
llvm-svn: 213753
The ARM ARM prohibits STRB instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STRB instructions with unpredictable behavior.
llvm-svn: 213750
There really is no arm64_be: it was a useful fiction to test big-endian support
while both backends existed in parallel, but now the only platform that uses
the name (iOS) doesn't have a big-endian variant, let alone one called
"arm64_be".
llvm-svn: 213748
The ARM ARM prohibits STR instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STR instructions with unpredictable behavior.
llvm-svn: 213745
This chang fully reverts r211771.
That revision added a canonicalization rule which has the potential to causes a
combine-cycle in the target-independent canonicalizing DAG combine.
The plan is to move the logic that forms target specific addsub nodes as part of
the lowering of shuffles.
llvm-svn: 213736
instruction sequences with CHECK-NEXT for these test cases.
This notably exposes how absolutely horrible the generated code is for
several of these test cases, and will make any future updates to the
test as our vector instruction selection gets better.
llvm-svn: 213732
The post-indexed instructions were missing the constraint, causing unpredictable STRH instructions to be emitted.
The earlyclobber constraint on the pre-indexed STR instructions is not strictly necessary, as the instruction selection for pre-indexed STR instructions goes through an additional layer of pseudo instructions which have the constraint defined, however it doesn't hurt to specify the constraint directly on the pre-indexed instructions as well, since at some point someone might create instances of them programmatically and then the constraint is definitely needed.
llvm-svn: 213729
insertions.
The old behavior could cause arbitrarily bad memory usage in the DAG
combiner if there was heavy traffic of adding nodes already on the
worklist to it. This commit switches the DAG combine worklist to work
the same way as the instcombine worklist where we null-out removed
entries and only add new entries to the worklist. My measurements of
codegen time shows slight improvement. The memory utilization is
unsurprisingly dominated by other factors (the IR and DAG itself
I suspect).
This change results in subtle, frustrating churn in the particular order
in which DAG combines are applied which causes a number of minor
regressions where we fail to match a pattern previously matched by
accident. AFAICT, all of these should be using AddToWorklist to directly
or should be written in a less brittle way. None of the changes seem
drastically bad, and a few of the changes seem distinctly better.
A major change required to make this work is to significantly harden the
way in which the DAG combiner handle nodes which become dead
(zero-uses). Previously, we relied on the ability to "priority-bump"
them on the combine worklist to achieve recursive deletion of these
nodes and ensure that the frontier of remaining live nodes all were
added to the worklist. Instead, I've introduced a routine to just
implement that precise logic with no indirection. It is a significantly
simpler operation than that of the combiner worklist proper. I suspect
this will also fix some other problems with the combiner.
I think the x86 changes are really minor and uninteresting, but the
avx512 change at least is hiding a "regression" (despite the test case
being just noise, not testing some performance invariant) that might be
looked into. Not sure if any of the others impact specific "important"
code paths, but they didn't look terribly interesting to me, or the
changes were really minor. The consensus in review is to fix any
regressions that show up after the fact here.
Thanks to the other reviewers for checking the output on other
architectures. There is a specific regression on ARM that Tim already
has a fix prepped to commit.
Differential Revision: http://reviews.llvm.org/D4616
llvm-svn: 213727
FIXME: "llvm-rtdyld -verify -check" is still sensitive to path separator.
Fix searching StubMap to be tolerant of both '/' and '\\' on Win32.
llvm-svn: 213723
This commit modifies the existing call lowering functions to be used as the
FastLowerCall and FastLowerIntrinsicCall target-hooks instead.
This enables patchpoint intrinsic lowering for AArch64.
This fixes <rdar://problem/17733076>
llvm-svn: 213704
This patch introduces a 'stub_addr' builtin that can be used to find the address
of the stub for a given (<file>, <section>, <symbol>) tuple. This address can be
used both to verify the contents of stubs (by loading from the returned address)
and to verify references to stubs (by comparing against the returned address).
Example (1) - Verifying stub contents:
Load 8 bytes (assuming a 64-bit target) from the stub for 'x' in the __text
section of f.o, and compare that value against the addres of 'x'.
# rtdyld-check: *{8}(stub_addr(f.o, __text, x) = x
Example (2) - Verifying references to stubs:
Decode the immediate of the instruction at label 'l', and verify that it's
equal to the offset from the next instruction's PC to the stub for 'y' in the
__text section of f.o (i.e. it's the correct PC-rel difference).
# rtdyld-check: decode_operand(l, 4) = stub_addr(f.o, __text, y) - next_pc(l)
l:
movq y@GOTPCREL(%rip), %rax
Since stub inspection requires cooperation with RuntimeDyldImpl this patch
pimpl-ifies RuntimeDyldChecker. Its implementation is moved in to a new class,
RuntimeDyldCheckerImpl, that has access to the definition of RuntimeDyldImpl.
llvm-svn: 213698
Factor out the addend encoding into a helper function and simplify the
processRelocationRef.
Also add a few simple rtdyld tests. More tests to come once GOTs can be tested too.
Related to <rdar://problem/17768539>
llvm-svn: 213689
It handles the errors which were seen in PR19958 where wrong code was being emitted due to earlier patch.
Added code for lshr as well as non-exact right shifts.
It implements :
(icmp eq/ne (ashr/lshr const2, A), const1)" ->
(icmp eq/ne A, Log2(const2/const1)) ->
(icmp eq/ne A, Log2(const2) - Log2(const1))
Differential Revision: http://reviews.llvm.org/D4068
llvm-svn: 213678
"((~A & B) | A) -> (A | B)" and "((A & B) | ~A) -> (~A | B)"
Original Patch credit to Ankit Jain !!
Differential Revision: http://reviews.llvm.org/D4591
llvm-svn: 213676
We previously supported the align attribute on all (pointer) parameters, but we
only used it for byval parameters. However, it is completely consistent at the
IR level to treat 'align n' on all pointer parameters as an alignment
assumption on the pointer, and now we wll. Specifically, this causes
computeKnownBits to use the align attribute on all pointer parameters, not just
byval parameters. I've also added an explicit parameter attribute test for this
to test/Bitcode/attributes.ll.
And I've updated the LangRef to document the align parameter attribute (as it
turns out, it was not documented at all previously, although the byval
documentation mentioned that it could be used).
There are (at least) two benefits to doing this:
- It allows enhancing alignment based on the pointer alignment after inlining callees.
- It allows simplification of pointer arithmetic.
llvm-svn: 213670
Without this, we produce non-extern relocations when targeting older OS X
versions that ld64 can't cope with in the particular context of __eh_frame
sections (who'd want generic relocation-processing anyway?).
This means that an updated linker (ld64 from Xcode 3.2.6 or later) may be
needed when targeting such platforms with a modern version of LLVM, but this is
probably the case anyway and a reasonable requirement.
PR20212, rdar://problem/17544795
llvm-svn: 213665
file not in the test/ area). Backing out now so that this test isn't part of
the 3.5 branch.
Original commit message: "TableGen: Allow AddedComplexity values to be negative
[...]"
llvm-svn: 213596
We should update the usages to all of the results;
otherwise, we might get assertion failure or SEGV during
the type legalization of ATOMIC_CMP_SWAP_WITH_SUCCESS
with two or more illegal types.
For example, in the following sequence, both i8 and i1
might be illegal in some target, e.g. armv5, mipsel, mips64el,
%0 = cmpxchg i8* %ptr, i8 %desire, i8 %new monotonic monotonic
%1 = extractvalue { i8, i1 } %0, 1
Since both i8 and i1 should be legalized, the corresponding
ATOMIC_CMP_SWAP_WITH_SUCCESS dag will be checked/replaced/updated
twice.
If we don't update the usage to *ALL* of the results in the
first round, the DAG for extractvalue might be processed earlier.
The GetPromotedInteger() will result in assertion failure,
because its operand (i.e. the success bit of cmpxchg) is not
promoted beforehand.
llvm-svn: 213569
There are a few more cleanups to do, but I ran into some problems
with ext loads and trunc stores, when I tried to change some of the
vector loads and stores from custom to legal, so I wasn't able to
get rid of everything.
llvm-svn: 213552
We now emit this value when we need to contradict the default value. This
restores support for binutils 2.24.
When a suitable binutils has been released we can resume unconditionally
emitting .module directives. This is preferable to omitting the .module
directives since the .module directives protect against, for example,
accidentally assembling FP32 code with -mfp64 and producing an unusuable object.
llvm-svn: 213548
This implements a solution for constant initializers suggested
by Vadim Girlin, where we store the data after the shader code
and then use the S_GETPC instruction to compute its address.
This saves use the trouble of creating a new buffer for constant data
and then having to pass the pointer to the kernel via user SGPRs or the
input buffer.
llvm-svn: 213530
This abstraction allows us to support the various records that can be placed in
the .MIPS.options section in the future. We currently use it to record register
usage information (the ODK_REGINFO record in our ELF64 spec).
Each .MIPS.options record should subclass MipsOptionRecord and provide an
implementation of EmitMipsOptionRecord.
Patch by Matheus Almeida and Toma Tabacu
llvm-svn: 213522
This is useful for cases when stand-alone patterns are preferred to the
patterns included in the instruction definitions. Instead of requiring
that stand-alone patterns set a larger AddedComplexity value, which
can be confusing to new developers, the allows us to reduce the
complexity of the included patterns to achieve the same result.
llvm-svn: 213521
We now emit this directive when we need to contradict the default value (e.g.
-mno-odd-spreg is given) or an option changed the default value (e.g. -mfpxx
is given).
This restores support for the currently available head of binutils. However,
at this point binutils 2.24 is still not sufficient since it does not support
'.module fp=...'.
llvm-svn: 213511
This makes the first stage DAG for @llvm.convert.to.fp16 an fptrunc,
and correspondingly @llvm.convert.from.fp16 an fpext. The legalisation
path is now uniform, regardless of the input IR:
fptrunc -> FP_TO_FP16 (if f16 illegal) -> libcall
fpext -> FP16_TO_FP (if f16 illegal) -> libcall
Each target should be able to select the version that best matches its
operations and not be required to duplicate patterns for both fptrunc
and FP_TO_FP16 (for example).
As a result we can remove some redundant AArch64 patterns.
llvm-svn: 213507
Canonicalize shuffles according to rules:
* shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
* shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
* shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
This patch helps identifying more shuffle pairs that could be combined reusing
the already existing rules in the DAGCombiner.
Added new test 'combine-vec-shuffle-5.ll' to verify that the canonicalized
shuffles are now folded into a single shuffle node by the DAGCombiner.
Added more test cases to 'combine-vec-shuffle-4.ll'.
llvm-svn: 213504
This patch adds infrastructure support for passing array types
directly. These can be used by the front-end to pass aggregate
types (coerced to an appropriate array type). The details of the
array type being used inform the back-end about ABI-relevant
properties. Specifically, the array element type encodes:
- whether the parameter should be passed in FPRs, VRs, or just
GPRs/stack slots (for float / vector / integer element types,
respectively)
- what the alignment requirements of the parameter are when passed in
GPRs/stack slots (8 for float / 16 for vector / the element type
size for integer element types) -- this corresponds to the
"byval align" field
Using the infrastructure provided by this patch, a companion patch
to clang will enable two features:
- In the ELFv2 ABI, pass (and return) "homogeneous" floating-point
or vector aggregates in FPRs and VRs (this is similar to the ARM
homogeneous aggregate ABI)
- As an optimization for both ELFv1 and ELFv2 ABIs, pass aggregates
that fit fully in registers without using the "byval" mechanism
The patch uses the functionArgumentNeedsConsecutiveRegisters callback
to encode that special treatment is required for all directly-passed
array types. The isInConsecutiveRegs / isInConsecutiveRegsLast bits set
as a results are then used to implement the required size and alignment
rules in CalculateStackSlotSize / CalculateStackSlotAlignment etc.
As a related change, the ABI routines have to be modified to support
passing floating-point types in GPRs. This is necessary because with
homogeneous aggregates of 4-byte float type we can now run out of FPRs
*before* we run out of the 64-byte argument save area that is shadowed
by GPRs. Any extra floating-point arguments that no longer fit in FPRs
must now be passed in GPRs until we run out of those too.
Note that there was already code to pass floating-point arguments in
GPRs used with vararg parameters, which was done by writing the argument
out to the argument save area first and then reloading into GPRs. The
patch re-implements this, however, in favor of code packing float arguments
directly via extension/truncation, BITCAST, and BUILD_PAIR operations.
This is required to support the ELFv2 ABI, since we cannot unconditionally
write to the argument save area (which the caller might not have allocated).
The change does, however, affect ELFv1 varags routines too; but even here
the overall effect should be advantageous: Instead of loading the argument
into the FPR, then storing the argument to the stack slot, and finally
reloading the argument from the stack slot into a GPR, the new code now
just loads the argument into the FPR, and subsequently loads the argument
into the GPR (via BITCAST). That BITCAST might imply a save/reload from
a stack temporary (in which case we're no worse than before); but it
might be implemented more efficiently in some cases.
The final part of the patch enables up to 8 FPRs and VRs for argument
return in PPCCallingConv.td; this is required to support returning
ELFv2 homogeneous aggregates. (Note that this doesn't affect other ABIs
since LLVM wil only look for which register to use if the parameter is
marked as "direct" return anyway.)
Reviewed by Hal Finkel.
llvm-svn: 213493
This is a minor improvement in the ELFv2 ABI. In ELFv1, DWARF CFI
would represent a saved CR word (holding CR fields CR2, CR3, and CR4)
using just a single CFI record refering to CR2. In ELFv2 instead,
each of the CR fields is represented by its own CFI record. The
advantage is that the compiler can now chose to save just a single
(or two) CR fields instead of all of them, if those are the only ones
that actually need saving. That can lead to more efficient code using
mf(o)crf instead of the (slow) mfcr instruction.
Note that this patch does not (yet) implement this more efficient
code generation, but it does implement the part that is required to
be ABI compliant: creating multiple CFI records if multiple CR fields
are saved.
Reviewed by Hal Finkel.
llvm-svn: 213492
The ELFv2 ABI reduces the amount of stack required to implement an
ABI-compliant function call in two ways:
* the "linkage area" is reduced from 48 bytes to 32 bytes by
eliminating two unused doublewords
* the 64-byte "parameter save area" is now optional and need not be
present in certain cases (it remains mandatory in functions with
variable arguments, and functions that have any parameter that is
passed on the stack)
The following patch implements this required changes:
- reducing the linkage area, and associated relocation of the TOC save
slot, in getLinkageSize / getTOCSaveOffset (this requires updating all
callers of these routines to pass in the isELFv2ABI flag).
- (partially) handling the case where the parameter save are is optional
This latter part requires some extra explanation: Currently, we still
always allocate the parameter save area when *calling* a function.
That is certainly always compliant with the ABI, but may cause code to
allocate stack unnecessarily. This can be addressed by a follow-on
optimization patch.
On the *callee* side, in LowerFormalArguments, we *must* track
correctly whether the ABI guarantees that the caller has allocated
the parameter save area for our use, and the patch does so. However,
there is one complication: the code that handles incoming "byval"
arguments will currently *always* write to the parameter save area,
because it has to force incoming register arguments to the stack since
it must return an *address* to implement the byval semantics.
To fix this, the patch changes the LowerFormalArguments code to write
arguments to a freshly allocated stack slot on the function's own stack
frame instead of the argument save area in those cases where that area
is not present.
Reviewed by Hal Finkel.
llvm-svn: 213490
This patch builds upon the two preceding MC changes to implement the
basic ELFv2 function call convention. In the ELFv1 ABI, a "function
descriptor" was associated with every function, pointing to both the
entry address and the related TOC base (and a static chain pointer
for nested functions). Function pointers would actually refer to that
descriptor, and the indirect call sequence needed to load up both entry
address and TOC base.
In the ELFv2 ABI, there are no more function descriptors, and function
pointers simply refer to the (global) entry point of the function code.
Indirect function calls simply branch to that address, after loading it
up into r12 (as required by the ABI rules for a global entry point).
Direct function calls continue to just do a "bl" to the target symbol;
this will be resolved by the linker to the local entry point of the
target function if it is local, and to a PLT stub if it is global.
That PLT stub would then load the (global) entry point address of the
final target into r12 and branch to it. Note that when performing a
local function call, r2 must be set up to point to the current TOC
base: if the target ends up local, the ABI requires that its local
entry point is called with r2 set up; if the target ends up global,
the PLT stub requires that r2 is set up.
This patch implements all LLVM changes to implement that scheme:
- No longer create a function descriptor when emitting a function
definition (in EmitFunctionEntryLabel)
- Emit two entry points *if* the function needs the TOC base (r2)
anywhere (this is done EmitFunctionBodyStart; note that this cannot
be done in EmitFunctionBodyStart because the global entry point
prologue code must be *part* of the function as covered by debug info).
- In order to make use tracking of r2 (as needed above) work correctly,
mark direct function calls as implicitly using r2.
- Implement the ELFv2 indirect function call sequence (no function
descriptors; load target address into r12).
- When creating an ELFv2 object file, emit the .abiversion 2 directive
to tell the linker to create the appropriate version of PLT stubs.
Reviewed by Hal Finkel.
llvm-svn: 213489
As discussed in a previous checking to support the .localentry
directive on PowerPC, we need to inspect the actual target symbol
in needsRelocateWithSymbol to make the appropriate decision based
on that symbol's st_other bits.
Currently, needsRelocateWithSymbol does not get the target symbol.
However, it is directly available to its sole caller. This patch
therefore simply extends the needsRelocateWithSymbol by a new
parameter "const MCSymbolData &SD", passes in the target symbol,
and updates all derived implementations.
In particular, in the PowerPC implementation, this patch removes
the FIXME added by the previous checkin.
llvm-svn: 213487
Prior to this change, the loop vectorizer did not make use of the alias
analysis infrastructure. Instead, it performed memory dependence analysis using
ScalarEvolution-based linear dependence checks within equivalence classes
derived from the results of ValueTracking's GetUnderlyingObjects.
Unfortunately, this meant that:
1. The loop vectorizer had logic that essentially duplicated that in BasicAA
for aliasing based on identified objects.
2. The loop vectorizer could not partition the space of dependency checks
based on information only easily available from within AA (TBAA metadata is
currently the prime example).
This means, for example, regardless of whether -fno-strict-aliasing was
provided, the vectorizer would only vectorize this loop with a runtime
memory-overlap check:
void foo(int *a, float *b) {
for (int i = 0; i < 1600; ++i)
a[i] = b[i];
}
This is suboptimal because the TBAA metadata already provides the information
necessary to show that this check unnecessary. Of course, the vectorizer has a
limit on the number of such checks it will insert, so in practice, ignoring
TBAA means not vectorizing more-complicated loops that we should.
This change causes the vectorizer to use an AliasSetTracker to keep track of
the pointers in the loop. The resulting alias sets are then used to partition
the space of dependency checks, and potential runtime checks; this results in
more-efficient vectorizations.
When pointer locations are added to the AliasSetTracker, two things are done:
1. The location size is set to UnknownSize (otherwise you'd not catch
inter-iteration dependencies)
2. For instructions in blocks that would need to be predicated, TBAA is
removed (because the metadata might have a control dependency on the condition
being speculated).
For non-predicated blocks, you can leave the TBAA metadata. This is safe
because you can't have an iteration dependency on the TBAA metadata (if you
did, and you unrolled sufficiently, you'd end up with the same pointer value
used by two accesses that TBAA says should not alias, and that would yield
undefined behavior).
llvm-svn: 213486
A second binutils feature needed to support ELFv2 is the .localentry
directive. In the ELFv2 ABI, functions may have two entry points:
one for calling the routine locally via "bl", and one for calling the
function via function pointer (either at the source level, or implicitly
via a PLT stub for global calls). The two entry points share a single
ELF symbol, where the ELF symbol address identifies the global entry
point address, while the local entry point is found by adding a delta
offset to the symbol address. That offset is encoded into three
platform-specific bits of the ELF symbol st_other field.
The .localentry directive instructs the assembler to set those fields
to encode a particular offset. This is typically used by a function
prologue sequence like this:
func:
addis r2, r12, (.TOC.-func)@ha
addi r2, r2, (.TOC.-func)@l
.localentry func, .-func
Note that according to the ABI, when calling the global entry point,
r12 must be set to point the global entry point address itself; while
when calling the local entry point, r2 must be set to point to the TOC
base. The two instructions between the global and local entry point in
the above example translate the first requirement into the second.
This patch implements support in the PowerPC MC streamers to emit the
.localentry directive (both into assembler and ELF object output), as
well as support in the assembler parser to parse that directive.
In addition, there is another change required in MC fixup/relocation
handling to properly deal with relocations targeting function symbols
with two entry points: When the target function is known local, the MC
layer would immediately handle the fixup by inserting the target
address -- this is wrong, since the call may need to go to the local
entry point instead. The GNU assembler handles this case by *not*
directly resolving fixups targeting functions with two entry points,
but always emits the relocation and relies on the linker to handle
this case correctly. This patch changes LLVM MC to do the same (this
is done via the processFixupValue routine).
Similarly, there are cases where the assembler would normally emit a
relocation, but "simplify" it to a relocation targeting a *section*
instead of the actual symbol. For the same reason as above, this
may be wrong when the target symbol has two entry points. The GNU
assembler again handles this case by not performing this simplification
in that case, but leaving the relocation targeting the full symbol,
which is then resolved by the linker. This patch changes LLVM MC
to do the same (via the needsRelocateWithSymbol routine).
NOTE: The method used in this patch is overly pessimistic, since the
needsRelocateWithSymbol routine currently does not have access to the
actual target symbol, and thus must always assume that it might have
two entry points. This will be improved upon by a follow-on patch
that modifies common code to pass the target symbol when calling
needsRelocateWithSymbol.
Reviewed by Hal Finkel.
llvm-svn: 213485
ELFv2 binaries are marked by a bit in the ELF header e_flags field.
A new assembler directive .abiversion can be used to set that flag.
This patch implements support in the PowerPC MC streamers to emit the
.abiversion directive (both into assembler and ELF binary output),
as well as support in the assembler parser to parse the .abiversion
directive.
Reviewed by Hal Finkel.
llvm-svn: 213484
The PPCTargetLowering::SelectAddressRegImm routine needs to handle
FrameIndex nodes in a special manner, by tranlating them into a
TargetFrameIndex node. This was done in most cases, but seems to
have been neglected in one path: when the input tree has an OR of
the FrameIndex with an immediate. This can happen if the FrameIndex
can be proven to be sufficiently aligned that an OR of that immediate
is equivalent to an ADD.
The missing handling of FrameIndex in that case caused the SelectionDAG
instruction selection to miss opportunities to merge the OR back into
the FrameIndex node, leading to superfluous addi/ori instructions in
the final assembler output.
llvm-svn: 213482
These instructions can only take a limited input range, and return
the constant value 1 out of range. We should do range reduction to
be able to process arbitrary values. Use a FRACT instruction after
normalization to achieve this. Also add a test for constant folding
with the lowered code with unsafe-fp-math enabled.
v2: use DAG lowering instead of intrinsic, adapt test
v3: calculate constant, fold pattern into instruction definition
v4: misc style fixes, add sin-fold testcase, cosmetics
Patch by Grigori Goronzy
llvm-svn: 213458
There are some kinds of metadata that are safe to propagate from the scalar
instructions to the vector instructions (fpmath and tbaa currently).
Regarding TBAA, one might worry about propagating it on if-converted loads and
stores, because the metadata might have had a control dependency on the
condition, and thus actually aliased with some other non-speculated memory
access when the condition was false. However, this would be caught by the
runtime overlap checks.
llvm-svn: 213452
Function @test3c should check that the DAGCombiner is able to fold a pair of
shuffles into a new shuffle with a permute mask of <6,7,2,3>. However, one of
the shuffles in @test3c had a wrong permute mask; this prevented the DAGCombiner
from folding the shuffles into the expected result.
Now that the shuffle mask is fixed, the backend correctly folds the two shuffles
in function @test3c into a single movhlps instruction.
llvm-svn: 213451
When we have a parameter (or call site return) with a dereferenceable
attribute, it can specify the size of an array pointed to by that parameter. If
we have a value for which we can accumulate a constant offset to such a
parameter, then we can use that offset in a direct comparison with the size
specified by the dereferenceable attribute.
This enables us to handle cases like this:
int foo(int a[static 3]) {
return a[2]; /* this is always dereferenceable */
}
llvm-svn: 213447