Currently, -ftime-report + new pass manager emits one line of report for each
pass run. This potentially causes huge output text especially with regular LTO
or large single file (Obeserved in private tests and was reported in D51276).
The behaviour of -ftime-report + legacy pass manager is
emitting one line of report for each pass object which has relatively reasonable
text output size. This patch adds a flag `-ftime-report=` to control time report
aggregation for new pass manager.
The flag is for new pass manager only. Using it with legacy pass manager gives
an error. It is a driver and cc1 flag. `per-pass` is the new default so
`-ftime-report` is aliased to `-ftime-report=per-pass`. Before this patch,
functionality-wise `-ftime-report` is aliased to `-ftime-report=per-pass-run`.
* Adds an boolean variable TimePassesHandler::PerRun to control per-pass vs per-pass-run.
* Adds a new clang CodeGen flag CodeGenOptions::TimePassesPerRun to work with the existing CodeGenOptions::TimePasses.
* Remove FrontendOptions::ShowTimers, its uses are replaced by the existing CodeGenOptions::TimePasses.
* Remove FrontendTimesIsEnabled (It was introduced in D45619 which was largely reverted.)
Differential Revision: https://reviews.llvm.org/D92436
This test shows we're in some cases not getting strictfp information from
the AST. Correct that.
Differential Revision: https://reviews.llvm.org/D92596
Sometimes people get minimal crash reports after a UBSAN incident. This change
tags each trap with an integer representing the kind of failure encountered,
which can aid in tracking down the root cause of the problem.
getFieldOffset(layoutStartOffset) is expected to point to the first trivial
field or the one which follows non-trivial. So it must be byte aligned already.
However this is not obvious without assumptions about callers.
This patch will avoid the need in such assumptions.
Depends on D92727.
Differential Revision: https://reviews.llvm.org/D92728
Such fields will likely have offset zero making
__sanitizer_dtor_callback poisoning wrong regions.
E.g. it can poison base class member from derived class constructor.
Differential Revision: https://reviews.llvm.org/D92727
PPCMCInstLower does not actually call shouldAssumeDSOLocal for ppc32 so this is dead.
Actually Clang ppc32 does produce a pair of absolute relocations which match GCC.
This also fixes a comment (R_PPC_COPY and R_PPC64_COPY do exist).
shouldRTTIBeUnique() returns false for iOS64CXXABI, which causes
RTTI objects to be emitted hidden. Update two tests that didn't
expect this to happen for the default triple.
Also rename iOS64CXXABI to AppleARM64CXXABI, since it's used for
arm64-apple-macos triples too.
Part of PR46644.
Differential Revision: https://reviews.llvm.org/D91904
An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be represented by a stack of callsite probes. Unlike pseudo probes for basic blocks that are in form of standalone intrinsic call instructions, pseudo probes for callsites have to be attached to the call instruction, thus a separate instruction would not work.
One possible way of attaching a probe to a call instruction is to use a special metadata that carries information about the probe. The special metadata will have to make its way through the optimization pipeline down to object emission. This requires additional efforts to maintain the metadata in various places. Given that the `!dbg` metadata is a first-class metadata and has all essential support in place , leveraging the `!dbg` metadata as a channel to encode pseudo probe information is probably the easiest solution.
With the requirement of not inflating `!dbg` metadata that is allocated for almost every instruction, we found that the 32-bit DWARF discriminator field which mainly serves AutoFDO can be reused for pseudo probes. DWARF discriminators distinguish identical source locations between instructions and with pseudo probes such support is not required. In this change we are using the discriminator field to encode the ID and type of a callsite probe and the encoded value will be unpacked and consumed right before object emission. When a callsite is inlined, the callsite discriminator field will go with the inlined instructions. The `!dbg` metadata of an inlined instruction is in form of a scope stack. The top of the stack is the instruction's original `!dbg` metadata and the bottom of the stack is for the original callsite of the top-level inliner. Except for the top of the stack, all other elements of the stack actually refer to the nested inlined callsites whose discriminator field (which actually represents a calliste probe) can be used together to represent the inline context of an inlined PseudoProbeInst or CallInst.
To avoid collision with the baseline AutoFDO in various places that handles dwarf discriminators where a check against the `-pseudo-probe-for-profiling` switch is not available, a special encoding scheme is used to tell apart a pseudo probe discriminator from a regular discriminator. For the regular discriminator, if all lowest 3 bits are non-zero, it means the discriminator is basically empty and all higher 29 bits can be reversed for pseudo probe use.
Callsite pseudo probes are inserted in `SampleProfileProbePass` and a target-independent MIR pass `PseudoProbeInserter` is added to unpack the probe ID/type from `!dbg`.
Note that with this work the switch -debug-info-for-profiling will not work with -pseudo-probe-for-profiling anymore. They cannot be used at the same time.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91756
Summary:
AIX uses the existing EH infrastructure in clang and llvm.
The major differences would be
1. AIX do not have CFI instructions.
2. AIX uses a new personality routine, named __xlcxx_personality_v1.
It doesn't use the GCC personality rountine, because the
interoperability is not there yet on AIX.
3. AIX do not use eh_frame sections. Instead, it would use a eh_info
section (compat unwind section) to store the information about
personality routine and LSDA data address.
Reviewed By: daltenty, hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D91455
In C++ when a reference variable is captured by copy, the lambda
is supposed to make a copy of the referenced variable in the captures
and refer to the copy in the lambda. Therefore, it is valid to capture
a reference to a host global variable in a device lambda since the
device lambda will refer to the copy of the host global variable instead
of access the host global variable directly.
However, clang tries to avoid capturing of reference to a host global variable
if it determines the use of the reference variable in the lambda function is
not odr-use. Clang also tries to emit load of the reference to a global variable
as load of the global variable if it determines that the reference variable is
a compile-time constant.
For a device lambda to capture a reference variable to host global variable
and use the captured value, clang needs to be taught that in such cases the use of the reference
variable is odr-use and the reference variable is not compile-time constant.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D91088
OpenMPIRBuilder::createParallel outlines the body region of the parallel
construct into a new function that accepts any value previously defined outside
the region as a function argument. This function is called back by OpenMP
runtime function __kmpc_fork_call, which expects trailing arguments to be
pointers. If the region uses a value that is not of a pointer type, e.g. a
struct, the produced code would be invalid. In such cases, make createParallel
emit IR that stores the value on stack and pass the pointer to the outlined
function instead. The outlined function then loads the value back and uses as
normal.
Reviewed By: jdoerfert, llitchev
Differential Revision: https://reviews.llvm.org/D92189
Commit 6b1341eb fixed alignment for 128-bit FP types on PowerPC.
However, the quadword alignment adjustment shouldn't be applied to IBM
extended double (ppc_fp128 in IR) values.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D92278
Methods synthesized from declared properties were being added to the
method lists twice. This came from the change to list them in the
class's method list, which missed removing the place in CGObjCGNU that
added them again.
Reviewed By: lanza
Differential Revision: https://reviews.llvm.org/D91874
Thanks to D77248, we can bypass the use of stubs altogether and use PLT
relocations if they are available for the target. LLVM and LLD support the
R_AARCH64_PLT32 relocation, so we can also guarantee a static PLT relocation on AArch64.
Not emitting these stubs saves a lot of extra binary size.
Differential Revision: https://reviews.llvm.org/D83812
After D17993, with -fno-delete-null-pointer-checks we add the dereferenceable attribute to the `this` pointer.
We have observed that one internal target which worked before fails even with -fno-delete-null-pointer-checks.
Switching to dereferenceable_or_null fixes the problem.
dereferenceable currently does not always respect NullPointerIsValid and may
imply nonnull and lead to aggressive optimization. The optimization may be
related to `CallBase::isReturnNonNull`, `Argument::hasNonNullAttr`, or
`Value::getPointerDereferenceableBytes`. See D66664 and D66618 for some discussions.
Reviewed By: bkramer, rsmith
Differential Revision: https://reviews.llvm.org/D92297
This change introduces a new clang switch `-fpseudo-probe-for-profiling` to enable AutoFDO with pseudo instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.
One implication from pseudo-probe instrumentation is that the profile is now sensitive to CFG changes. We perform the pseudo instrumentation very early in the pre-LTO pipeline, before any CFG transformation. This ensures that the CFG instrumented and annotated is stable and optimization-resilient.
The early instrumentation also allows the inliner to duplicate probes for inlined instances. When a probe along with the other instructions of a callee function are inlined into its caller function, the GUID of the callee function goes with the probe. This allows samples collected on inlined probes to be reported for the original callee function.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D86502
Currently clang is not correctly retrieving from the AST the metadata for
constrained FP builtins. This patch fixes that for the non-target specific
builtins.
Differential Revision: https://reviews.llvm.org/D92122
This patch enables vector type arguments on AIX. All non-aggregate Altivec vector types are 16bytes in size and are 16byte aligned.
Reviewed By: Xiangling_L
Differential Revision: https://reviews.llvm.org/D92117
This code got quite twisted because we consider some MSVC builtins to be
target agnostic, and some to be target specific. Target specific
intrinsics have a pattern of doing up-front argument evaluation, while
general intrinsics do not evaluate their arguments up front. As we tried
to share codepaths between the target-specific and target-agnostic
handling, we ended up doing double evaluation.
Instead, have each target handle MSVC intrinsics consistently before up
front argument evaluation. This requires passing less data around and is
more consistent with target independent intrinsic handling.
See D50979 for past examples of this bug. I noticed this while looking
into adding some more intrinsics.
Differential Revision: https://reviews.llvm.org/D92061
Added support for the options mabi=vec-extabi and mabi=vec-default which are analogous to qvecnvol and qnovecnvol when using XL on AIX.
The extended Altivec ABI on AIX is enabled using mabi=vec-extabi in clang and vec-extabi in llc.
Reviewed By: Xiangling_L, DiggerLin
Differential Revision: https://reviews.llvm.org/D89684
Add a Visited set to avoid repeatedly processing the same base classes
in complex class hierarchies. This cut down the compile time of one
source file from >12min to ~1min.
Differential Revision: https://reviews.llvm.org/D91676
Recently HIP toolchain made a change to use clang instead of opt/llc to do compilation
(https://reviews.llvm.org/D81861). The intention is to make HIP toolchain canonical like
other toolchains.
However, this change introduced an unintentional change regarding backend fp fuse
option, which caused regressions in some HIP applications.
Basically before the change, HIP toolchain used clang to generate bitcode, then use
opt/llc to optimize bitcode and generate ISA. As such, the amdgpu backend takes
the default fp fuse mode which is 'Standard'. This mode respect contract flag of
fmul/fadd instructions and do not fuse fmul/fadd instructions without contract flag.
However, after the change, HIP toolchain now use clang to generate IR, do optimization,
and generate ISA as one process. Now amdgpu backend fp fuse option is determined
by -ffp-contract option, which is 'fast' by default. And this -ffp-contract=fast language option
is translated to 'Fast' fp fuse option in backend. Suddenly backend starts to fuse fmul/fadd
instructions without contract flag.
This causes wrong result for some device library functions, e.g. tan(-1e20), which should
return 0.8446, now returns -0.933. What is worse is that since backend with 'Fast' fp fuse
option does not respect contract flag, there is no way to use #pragma clang fp contract
directive to enforce fp contract requirements.
This patch fixes the regression by introducing a new value 'fast-honor-pragmas' for -ffp-contract
and use it for HIP by default. 'fast-honor-pragmas' is equivalent to 'fast' in frontend but
let the backend to use 'Standard' fp fuse option. 'fast-honor-pragmas' is useful since 'Fast'
fp fuse option in backend does not honor contract flag, it is of little use to HIP
applications since all code with #pragma STDC FP_CONTRACT or any IR from a
source compiled with -ffp-contract=on is broken.
Differential Revision: https://reviews.llvm.org/D90174
Ensure that the DSO Locality of the globals in the IR is derived from
their final visibility when using -fvisibility-from-dllstorageclass.
To accomplish this we reset the DSO locality of globals (before
setting their visibility from their dllstorageclass) at the end of
IRGen in Clang. This removes any effects that visibility options or
annotations may have had on the DSO locality.
The resulting DSO locality of the globals will be pessimistic
w.r.t. to the normal compiler IRGen.
Differential Revision: https://reviews.llvm.org/D91779
After fix for PR48174 the base pointer for pointer-based
array-sections/array-subscripts will be emitted as `&ptr[idx]`, but
actually it should be just `ptr`, i.e. the address stored in the ponter
to point correctly to the beginning of the array. Currently it may lead
to a crash in the runtime.
Differential Revision: https://reviews.llvm.org/D91805
This will ensure that passes that add new global variables will create them
in address space 1 once the passes have been updated to no longer default
to the implicit address space zero.
This also changes AutoUpgrade.cpp to add -G1 to the DataLayout if it wasn't
already to present to ensure bitcode backwards compatibility.
Reviewed by: arsenm
Differential Revision: https://reviews.llvm.org/D84345
This moves handling of alwaysinline, coroutines, matrix lowering, PGO,
and LTO-required passes into PassBuilder. Much of this is replicated
between Clang and opt. Other out-of-tree users also replicate some of
this, such as Rust [1] replicating the alwaysinline, LTO, and PGO
passes.
The LTO passes are also now run in
build(Thin)LTOPreLinkDefaultPipeline() since they are semantically
required for (Thin)LTO.
[1]: f5230fbf76/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp (L896)
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D91585
Summary:
Add support for passing source locations to libomptarget runtime functions using the ident_t struct present in the rest of the libomp API. This will allow the runtime system to give much more insightful error messages and debugging values.
Reviewers: jdoerfert grokos
Differential Revision: https://reviews.llvm.org/D87946
According to ELF v2 ABI, both IEEE 128-bit and IBM extended floating
point variables should be quad-word (16 bytes) aligned. Previously, only
vector types are considered aligned as quad-word on PowerPC.
This patch will fix incorrectness of IEEE 128-bit float argument in
va_arg cases.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D91596
Summary:
This patch adds support for passing in the original delcaration name in the source file to the libomptarget runtime. This will allow the runtime to provide more intelligent debugging messages. This patch takes the original expression parsed from the OpenMP map / update clause and provides a textual representation if it was explicitly mapped, otherwise it takes the name of the variable declaration as a fallback. The information in passed to the runtime in a global array of strings that matches the existing ident_t source location strings using ";name;filename;column;row;;"
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D89802
The compiler should treat array subscript with base pointer as a first
pointer in complex data, it is used only for member expression with base
pointer.
Differential Revision: https://reviews.llvm.org/D91660
Matrix types in memory are represented as arrays, but accessed through
vector pointers, with the alignment specified on the access operation.
For inline assembly, update pointer arguments to use vector pointers.
Otherwise there will be a mis-match if the matrix is also an
input-argument which is represented as vector.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D91631
If the data member pointer is mapped, the compiler tries to optimize the
mapping of such data by discarding explicit mapping flags and trying to
emit combined data instead. In some cases, this optimization is not
quite correctly implemented and it leads to a program crash at the
runtime. Instead, if the data member is mapped, just emit it as is and
do not emit combined mapping flags for it.
Differential Revision: https://reviews.llvm.org/D91552
Add an option -munsafe-fp-atomics for AMDGPU target.
When enabled, clang adds function attribute "amdgpu-unsafe-fp-atomics"
to any functions for amdgpu target. This allows amdgpu backend to use
unsafe fp atomic instructions in these functions.
Differential Revision: https://reviews.llvm.org/D91546
arguments.
* Adds 'nonnull' and 'dereferenceable(N)' to 'this' pointer arguments
* Gates 'nonnull' on -f(no-)delete-null-pointer-checks
* Introduces this-nonnull.cpp and microsoft-abi-this-nullable.cpp tests to
explicitly test the behavior of this change
* Refactors hundreds of over-constrained clang tests to permit these
attributes, where needed
* Updates Clang12 patch notes mentioning this change
Reviewed-by: rsmith, jdoerfert
Differential Revision: https://reviews.llvm.org/D17993
This patch updates Clang's IRGen to add !annotation nodes with an
"auto-init" annotation to all stores for auto-initialization.
As discussed in 'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)
this allows using optimization remarks to track down where auto-init
code was inserted (and not removed by optimizations).
There are a few cases in the tests where !annotation gets dropped by
optimizations. Those optimizations will be updated in subsequent
patches.
This patch is based on a patch by Francis Visoiu Mistrih.
Reviewed By: thegameg, paquette
Differential Revision: https://reviews.llvm.org/D91417
parameters.
It appears that LLVM isn't able to generate a DW_AT_const_value for a
constant of class type, but if it could, we'd match GCC's debug info in
this case, and in the interim we no longer crash.
See discussion in https://bugs.llvm.org/show_bug.cgi?id=45073 / https://reviews.llvm.org/D66324#2334485
the implementation is known-broken for certain inputs,
the bugreport was up for a significant amount of timer,
and there has been no activity to address it.
Therefore, just completely rip out all of misexpect handling.
I suspect, fixing it requires redesigning the internals of MD_misexpect.
Should anyone commit to fixing the implementation problem,
starting from clean slate may be better anyways.
This reverts commit 7bdad08429,
and some of it's follow-ups, that don't stand on their own.
The code has a few sequence that looked like:
Ops.push_back(Ops[0]);
Ops.erase(Ops.begin());
And are equivalent to:
std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
The latter has the advantage of never reallocating the vector, which
would be a bug in the original code as push_back would read from the
memory it deallocated.
Make it required. Since it's a module pass, optnone won't test it, so
extend the clang test to also use opt-bisect now that it's supported.
14/16 check-dfsan tests failed with NPM enabled, now all pass.
Reviewed By: leonardchan
Differential Revision: https://reviews.llvm.org/D91385
- If an aggregate argument is indirectly accessed within kernels, direct
passing results in unpromotable `alloca`, which degrade performance
significantly. InferAddrSpace pass is enhanced in
[D91121](https://reviews.llvm.org/D91121) to take the assumption that
generic pointers loaded from the constant memory could be regarded
global ones. The need for the coercion on aggregate arguments is
mitigated.
Differential Revision: https://reviews.llvm.org/D89980
This removes lots of duplicated code which was necessary before
https://reviews.llvm.org/D89158.
Now we can use PassBuilder::runRegisteredEPCallbacks().
This is mostly sanitizers.
There is likely more that can be done to simplify, but let's start with this.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D90870
Need to check if there are map types for the components before trying to
access them when trying to modify type mappings for combined partial
mappings.
Differential Revision: https://reviews.llvm.org/D91370
For dllexported default constructors with default arguments, we export
default constructor closures which pass in the default args. (See D8331
for a good explanation.)
For templates, that means those default args must be instantiated even
if the function isn't called. That is done by the
InstantiateDefaultCtorDefaultArgs() function, but it wasn't done for
explicit specializations, causing asserts (see bug).
Differential revision: https://reviews.llvm.org/D91089
Some targets may add required passes via
TargetMachine::registerPassBuilderCallbacks(). We need to run those even
under -O0. As an example, BPFTargetMachine adds
BPFAbstractMemberAccessPass, a required pass.
This also allows us to clean up BackendUtil.cpp (and out-of-tree Rust
usage of the NPM) by allowing us to share added passes like coroutines
and sanitizers between -O0 and other optimization levels.
Since callbacks may end up not adding passes, we need to check if the
pass managers are empty before adding them, so PassManager now has an
isEmpty() function. For example, polly adds callbacks but doesn't always
add passes in those callbacks, so this is necessary to keep
-debug-pass-manager tests' output from changing depending on if polly is
enabled or not.
Tests are a continuation of those added in
https://reviews.llvm.org/D89083.
Reviewed By: asbirlea, Meinersbur
Differential Revision: https://reviews.llvm.org/D89158
except where they are necessary to disambiguate the target.
This substantially improves diagnostics from the standard library,
which are otherwise full of `::__1::` noise.
This enables a method sending an autorelease message to an object and
returning the object in MRR to avoid adding the object to an autorelease
pool if a call to objc_retainAutoreleasedReturnValue in the caller
function accepts the hand off of the retain count.
rdar://problem/50678052
Differential Revision: https://reviews.llvm.org/D91111
mangling support for non-type template parameters of class type and
template parameter objects.
The Itanium side of this follows the approach I proposed in
https://github.com/itanium-cxx-abi/cxx-abi/issues/47 on 2020-09-06.
The MSVC side of this was determined empirically by observing MSVC's
output.
Differential Revision: https://reviews.llvm.org/D89998
For consistency with the IRBuilder, OpenMPIRBuilder has method names starting with 'Create'. However, the LLVM coding style has methods names starting with lower case letters, as all other OpenMPIRBuilder already methods do. The clang-tidy configuration used by Phabricator also warns about the naming violation, adding noise to the reviews.
This patch renames all `OpenMPIRBuilder::CreateXYZ` methods to `OpenMPIRBuilder::createXYZ`, and updates all in-tree callers.
I tested check-llvm, check-clang, check-mlir and check-flang to ensure that I did not miss a caller.
Reviewed By: mehdi_amini, fghanim
Differential Revision: https://reviews.llvm.org/D91109
D86841 had an error where for statements with no conditional were
required to make progress. This is not true, this patch removes that
line, and adds regression tests.
Differential Revision: https://reviews.llvm.org/D91075
In order not to modify the `tgt_target_data_update` information but still be
able to pass the extra information for non-contiguous map item (offset,
count, and stride for each dimension), this patch overload `arg` when
the maptype is set as `OMP_MAP_DESCRIPTOR`. The origin `arg` is for
passing the pointer information, however, the overloaded `arg` is an
array of descriptor_dim:
struct descriptor_dim {
int64_t offset;
int64_t count;
int64_t stride
};
and the array size is the same as dimension size. In addition, since we
have count and stride information in descriptor_dim, we can replace/overload the
`arg_size` parameter by using dimension size.
For supporting `stride` in array section, we use a dummy dimension in
descriptor to store the unit size. The formula for counting the stride
in dimension D_n: `unit size * (D_0 * D_1 ... * D_n-1) * D_n.stride`.
Demonstrate how it works:
```
double arr[3][4][5];
D0: { offset = 0, count = 1, stride = 8 } // offset, count, dimension size always be 0, 1, 1 for this extra dimension, stride is the unit size
D1: { offset = 0, count = 2, stride = 8 * 1 * 2 = 16 } // stride = unit size * (product of dimension size of D0) * D1.stride = 4 * 1 * 2 = 8
D2: { offset = 2, count = 2, stride = 8 * (1 * 5) * 1 = 40 } // stride = unit size * (product of dimension size of D0, D1) * D2.stride = 4 * 5 * 1 = 20
D3: { offset = 0, count = 2, stride = 8 * (1 * 5 * 4) * 2 = 320 } // stride = unit size * (product of dimension size of D0, D1, D2) * D3.stride = 4 * 25 * 2 = 200
// X here means we need to offload this data, therefore, runtime will transfer
// data from offset 80, 96, 120, 136, 400, 416, 440, 456
// Runtime patch: https://reviews.llvm.org/D82245
// OOOOO OOOOO OOOOO
// OOOOO OOOOO OOOOO
// XOXOO OOOOO XOXOO
// XOXOO OOOOO XOXOO
```
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D84192
The strictfp metadata was added to the casting AST nodes in D85960, but
we aren't using that metadata yet. This patch adds that support.
In order to avoid lots of ad-hoc passing around of the strictfp bits I
updated the IRBuilder when moving from a function that has the Expr* to a
function that lacks it. I believe we should switch to this pattern to keep
the strictfp support from being overly invasive.
For the purpose of testing that we're picking up the right metadata, I
also made my tests use a pragma to make the AST's strictfp metadata not
match the global strictfp metadata. This exposes issues that we need to
deal with in subsequent patches, and I believe this is the right method
for most all of our clang strictfp tests.
Differential Revision: https://reviews.llvm.org/D88913
For the language C++ the keyword __unaligned (a Microsoft extension) had no effect on pointers.
The reason, why there was a difference between C and C++ for the keyword __unaligned:
For C, the Method getAsCXXREcordDecl() returns nullptr. That guarantees that hasUnaligned() is called.
If the language is C++, it is not guaranteed, that hasUnaligend() is called and evaluated.
Here are some links:
The Bug: https://bugs.llvm.org/show_bug.cgi?id=47499
Thread on the cfe-dev mailing list: http://lists.llvm.org/pipermail/cfe-dev/2020-September/066783.html
Diff, that introduced the check hasUnaligned() in getNaturalTypeAlignment(): https://reviews.llvm.org/D30166
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D90630
Some targets may add required passes via
TargetMachine::registerPassBuilderCallbacks(). We need to run those even
under -O0. As an example, BPFTargetMachine adds
BPFAbstractMemberAccessPass, a required pass.
This also allows us to clean up BackendUtil.cpp (and out-of-tree Rust
usage of the NPM) by allowing us to share added passes like coroutines
and sanitizers between -O0 and other optimization levels.
Tests are a continuation of those added in
https://reviews.llvm.org/D89083.
In order to prevent TargetMachines from adding unnecessary optimization
passes at -O0, TargetMachine::registerPassBuilderCallbacks() will be
changed to take an OptimizationLevel, but that will be done separately.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89158
Since C++11, the C++ standard has a forward progress guarantee
[intro.progress], so all such functions must have the `mustprogress`
requirement. In addition, from C11 and onwards, loops without a non-zero
constant conditional or no conditional are also required to make
progress (C11 6.8.5p6). This patch implements these attribute deductions
so they can be used by the optimization passes.
Differential Revision: https://reviews.llvm.org/D86841
Clang now asserts for the below case:
```
void clang::CodeGen::CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata(): Assertion `std::get<0>(E) && "All ordered entries must exist!"' failed.
```
The reason why Clang hit the assert is because in
`emitTargetDataCalls`, both `BeginThenGen` and `BeginElseGen` call
`registerTargetRegionEntryInfo` and try to register the Entry in
OffloadEntriesTargetRegion with same key. If changing the expression in
if clause to any constant expression, then the assert disappear. (https://godbolt.org/z/TW7haj)
The assert itself is to avoid
user from accessing elements out of bound inside `OrderedEntries` in
`createOffloadEntriesAndInfoMetadata`.
In this patch, I add a check in `registerTargetRegionEntryInfo` to avoid
register the target region more than once.
A test case that triggers assert: https://godbolt.org/z/4cnGW8
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D90704
Since glibc has supported math library functions conforming IEEE 128-bit
floating point types on some platform (like ppc64le), we can fix clang's
math builtins missing this type.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D90593
Add MMA builtin decoding. These builtins use the new PowerPC-specific types __vector_pair and __vector_quad.
So to avoid pervasive changes, we use custom type descriptors and custom decoding for these builtins.
We also use custom code generation to expand builtin calls with pointers to simpler intrinsic calls with non-pointer types.
Differential Revision: https://reviews.llvm.org/D81748
415f7ee883 had a silly typo introduced when I inlined some
code into a loop from its own function.
Original commit message:
For PlayStation we offer source code compatibility with
Microsoft's dllimport/export annotations; however, our file
format is based on ELF.
To support this we translate from DLL storage class to ELF
visibility at the end of codegen in Clang.
Other toolchains have used similar strategies (e.g. see the
documentation for this ARM toolchain:
https://developer.arm.com/documentation/dui0530/i/migrating-from-rvct-v3-1-to-rvct-v4-0/changes-to-symbol-visibility-between-rvct-v3-1-and-rvct-v4-0)
This patch adds the ability to perform this translation. Options
are provided to support customizing the mapping behaviour.
Differential Revision: https://reviews.llvm.org/D89970
This differentiates the Ryzen 4000/4300/4500/4700 series APUs that were
previously included in gfx909.
Differential Revision: https://reviews.llvm.org/D90419
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
Currently for explicit template function instantiation in CUDA/HIP device
compilation clang emits instantiated kernel with external linkage
and instantiated device function with internal linkage.
This is fine for -fno-gpu-rdc since there is only one TU.
However this causes duplicate symbols for kernels for -fgpu-rdc if
the same instantiation happen in multiple TU. Or missing symbols
if a device function calls an explicitly instantiated template function
in a different TU.
To make explicit template function instantiation work for
-fgpu-rdc we need to follow the C++ linkage paradigm, i.e.
use weak_odr linkage.
Differential Revision: https://reviews.llvm.org/D90311
The __isPlatformVersionAtLeast routine is an implementation of `if (@available)` check
that uses the _availability_version_check API on Darwin that's supported on
macOS 10.15, iOS 13, tvOS 13 and watchOS 6.
Differential Revision: https://reviews.llvm.org/D90367
415f7ee883 had LIT test failures on any build where the clang executable
was not called "clang". I have adjusted the LIT CHECKs to remove the
binary name to fix this.
Original commit message:
For PlayStation we offer source code compatibility with
Microsoft's dllimport/export annotations; however, our file
format is based on ELF.
To support this we translate from DLL storage class to ELF
visibility at the end of codegen in Clang.
Other toolchains have used similar strategies (e.g. see the
documentation for this ARM toolchain:
https://developer.arm.com/documentation/dui0530/i/migrating-from-rvct-v3-1-to-rvct-v4-0/changes-to-symbol-visibility-between-rvct-v3-1-and-rvct-v4-0)
This patch adds the ability to perform this translation. Options
are provided to support customizing the mapping behaviour.
Differential Revision: https://reviews.llvm.org/D89970
Similar to -fprofile-generate=, add -fmemory-profile= which takes a
directory path. This is passed down to LLVM via a new module flag
metadata. LLVM in turn provides this name to the runtime via the new
__memprof_profile_filename variable.
Additionally, always pass a default filename (in $cwd if a directory
name is not specified vi the = form of the option). This is also
consistent with the behavior of the PGO instrumentation. Since the
memory profiles will generally be fairly large, it doesn't make sense to
dump them to stderr. Also, importantly, the memory profiles will
eventually be dumped in a compact binary format, which is another reason
why it does not make sense to send these to stderr by default.
Change the existing memprof tests to specify log_path=stderr when that
was being relied on.
Depends on D89086.
Differential Revision: https://reviews.llvm.org/D89087
The attribute has no effect on a do statement since the path of execution
will always include its substatement.
It adds a diagnostic when the attribute is used on an infinite while loop
since the codegen omits the branch here. Since the likelihood attributes
have no effect on a do statement no diagnostic will be issued for
do [[unlikely]] {...} while(0);
Differential Revision: https://reviews.llvm.org/D89899
Make DebugLogging a member variable so that users of PassBuilder don't
need to pass it around so much.
Move call to TargetMachine::registerPassBuilderCallbacks() within
PassBuilder so users don't need to remember to call it.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D90437
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
We don't currently support passing unnamed variadic SVE arguments
so I've added a fatal error if we hit such cases to prevent any
silent ABI issues in future.
Differential Revision: https://reviews.llvm.org/D90230
This patch is mainly doing two things:
1. Adding support for parentheses, making the combination of target features
more diverse;
2. Making the priority of ’,‘ is higher than that of '|' by default. So I need
to make some change with PTX Builtin function.
Differential Revision: https://reviews.llvm.org/D89184
[AMDGPU] Add __builtin_amdgcn_grid_size
Similar to D76772, loads the data from the dispatch pointer. Marked invariant.
Patch also updates the openmp devicertl to use this builtin.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D90251
We used to only emit static const data members in CodeView as
S_CONSTANTS when they were used; this patch makes it so they are always emitted.
This changes CodeViewDebug.cpp to find the static const members from the
class debug info instead of creating DIGlobalVariables in the IR
whenever a static const data member is used.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47580
Differential Revision: https://reviews.llvm.org/D89072
This reverts commit 504615353f.
Previously we added support for target nowait, but target data nowait
has not been supported yet. In this patch, target data nowait will also be
wrapped into a task.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90099
Define the __vector_pair and __vector_quad types that are used to manipulate
the new accumulator registers introduced by MMA on PowerPC. Because these two
types are specific to PowerPC, they are defined in a separate new file so it
will be easier to add other PowerPC specific types if we need to in the future.
Differential Revision: https://reviews.llvm.org/D81508
As proposed in https://github.com/WebAssembly/simd/pull/376. This commit
implements new builtin functions and intrinsics for these instructions, but does
not yet add them to wasm_simd128.h because they have not yet been merged to the
proposal. These are the first instructions with opcodes greater than 0xff, so
this commit updates the MC layer and disassembler to handle that correctly.
Differential Revision: https://reviews.llvm.org/D90253
[libomptarget][nvptx] Undef, weak shared variables
Shared variables on nvptx, and LDS on amdgcn, are uninitialized at
the start of kernel execution. Therefore create the variables with
undef instead of zeros, motivated in part by the amdgcn back end
rejecting LDS+initializer.
Common is zero initialized, which seems incompatible with shared. Thus
change them to weak, following the direction of
https://reviews.llvm.org/rG7b3eabdcd215
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90248
Summary:
This patch adds support for passing in the original delcaration name in the
source file to the libomptarget runtime. This will allow the runtime to provide
more intelligent debugging messages. This patch takes the original expression
parsed from the OpenMP map / update clause and provides a textual
representation if it was explicitly mapped, otherwise it takes the name of the
variable declaration as a fallback. The information in passed to the runtime in
a global array of strings that matches the existing ident_t source location
strings using ";name;filename;column;row;;". See
clang/test/OpenMP/target_map_names.cpp for an example of the generated output
for a given map clause.
Reviewers: jdoervert
Differential Revision: https://reviews.llvm.org/D89802
In current implementation, if it requires an outer task, the mapper array will be privatized no matter whether it has mapper. In fact, when there is no mapper, the mapper array only contains number of nullptr. In the libomptarget, the use of mapper array is `if (mappers_array && mappers_array[i])`, which means we can directly set mapper array to nullptr if there is no mapper. This can avoid unnecessary data copy.
In this patch, the data privatization will not be emitted if the mapper array is nullptr. When it comes to the emit of task body, the nullptr will be used directly.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90101
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
The implementation of target nowait just wraps the target region into a task. The essential four parameters (base ptr, ptr, size, mapper) are taken as firstprivate such that they will be copied to the private location. When there is no user-defined mapper, the mapper variable will be nullptr. However, it will be still copied to the corresponding place. Therefore, a memcpy will be generated and the source pointer will be nullptr, causing a segmentation fault. The root cause is when calling `emitOffloadingArraysArgument`, the last argument `Options` has a field about whether it requires a task. It only takes depend clause into account. In this patch, the nowait clause is also included.
There're two things that will be done in another patches:
1. target data nowait has not been supported yet. D90099 added the support.
2. When there is no mapper, the mapper array can be nullptr no matter whether it requires outer task or not. It can avoid an unnecessary data copy. This is an optimization that is covered in D90101.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89844
We used to only emit static const data members in CodeView as
S_CONSTANTS when they were used; this patch makes it so they are always emitted.
I changed CodeViewDebug.cpp to find the static const members from the
class debug info instead of creating DIGlobalVariables in the IR
whenever a static const data member is used.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47580
Differential Revision: https://reviews.llvm.org/D89072
This is a long-delayed follow-up to
5e5b85098d.
`TempMDNode` includes a bunch of machinery for RAUW, and should only be
used when necessary. RAUW wasn't being used in any of these cases... it
was just a placeholder for a self-reference.
Where the real node was using `MDNode::getDistinct`, just replace the
temporary argument with `nullptr`.
Where the real node was using `MDNode::get`, the `replaceOperandWith`
call was "promoting" the node to a distinct one implicitly due to
self-reference detection in `MDNode::handleChangedOperand`. The
`TempMDNode` was serving a purpose by delaying uniquing, but it's way
simpler to just call `MDNode::getDistinct` in the first place.
Note that using a self-reference at all in these places is a hold-over
from before `distinct` metadata existed. It was an old trick to create
distinct nodes. It would be intrusive to change, including bitcode
upgrades, etc., and it's harmless so I'm not sure there's much value in
removing it from existing schemas. After this commit it still has a tiny
memory cost (in the extra metadata operand) but no more overhead in
construction.
Differential Revision: https://reviews.llvm.org/D90079
This allows using annotation in a much more contexts than it currently has.
especially when annotation with template or constexpr.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D88645
It's currently ambiguous in IR whether the source language explicitly
did not want a stack a stack protector (in C, via function attribute
no_stack_protector) or doesn't care for any given function.
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an __attribute__((__no_stack_protector__)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
Typically, when inlining a callee into a caller, the caller will be
upgraded in its level of stack protection (see adjustCallerSSPLevel()).
By adding an explicit attribute in the IR when the function attribute is
used in the source language, we can now identify such cases and prevent
inlining. Block inlining when the callee and caller differ in the case that one
contains `nossp` when the other has `ssp`, `sspstrong`, or `sspreq`.
Fixes pr/47479.
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D87956
non-type template parameters.
Create a unique TemplateParamObjectDecl instance for each such value,
representing the globally unique template parameter object to which the
template parameter refers.
No IR generation support yet; that will follow in a separate patch.
assembly operands."
Earlyclobbers are now excepted from this change (original commit: c78da03).
Review: Ulrich Weigand, Nick Desaulniers
Differential Revision: https://reviews.llvm.org/D87279
The patch adjusts the existing `llvm::DenseMap<unsigned, T>` and
`llvm::DenseSet<unsigned>` objects that store source locations, so
that they use `SourceLocation` directly instead of `unsigned`.
This patch relies on the `DenseMapInfo` trait added in D89719.
It also replaces the construction of `SourceLocation` objects from
the constants -1 and -2 with calls to the trait's methods `getEmptyKey`
and `getTombstoneKey` where appropriate.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D69840
This fixes miscomputation of __builtin_constant_evaluated in the
initializer of a variable that's not usable in constant expressions, but
is readable when constant-folding.
If evaluation of a constant initializer fails, we throw away the
evaluated result instead of keeping it as a non-constant-initializer
value for the variable, because it might not be a correct value.
To avoid regressions for initializers that are foldable but not formally
constant initializers, we now try constant-evaluating some globals in
C++ twice: once to check for a constant initializer (in an mode where
is_constannt_evaluated returns true) and again to determine the runtime
value if the initializer is not a constant initializer.
The name is unfortunate because it is similar to the driver option -ftest-coverage.
It turns out aside from one occurrence in a test, this option is not used.
Instead of framing the interface around whether the variable is an ICE
(which is only interesting in C++98), primarily track whether the
initializer is a constant initializer (which is interesting in all C++
language modes).
No functionality change intended.
for which it matters.
This is a step towards separating checking for a constant initializer
(in which std::is_constant_evaluated returns true) and any other
evaluation of a variable initializer (in which it returns false).
Recently commit D78699 (commit 26cfb6e562), fixed clang's behavior with respect
to passing a union type through a register to correctly follow the ABI. However,
this is an ABI breaking change with earlier versions of the clang compiler, so we
should add an -fclang-abi-compat option to address this. Additionally, the PS4 ABI
requires the older behavior, so that is added as well.
This change adds a Ver11 value to the ClangABI enum that when it is set (or the
target is the PS4 triple), we skip the ABI fix introduced in D78699.
Differential Revision: https://reviews.llvm.org/D89747
This broke Chromium's PGO build, it seems because hot-cold-splitting got turned
on unintentionally. See comment on the code review for repro etc.
> This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
> the splitting pass to be toggled on/off. The current method of passing
> `-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
> correctly (say, with `-O0` or `-Oz`).
>
> To implement the -fsplit-cold-code option, an attribute is applied to
> functions to indicate that they may be considered for splitting. This
> removes some complexity from the old/new PM pipeline builders, and
> behaves as expected when LTO is enabled.
>
> Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
> Differential Revision: https://reviews.llvm.org/D57265
> Reviewed By: Aditya Kumar, Vedant Kumar
> Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
This reverts commit 273c299d5d.
Implementing the likelihood attributes for the iteration statements adds
a new helper function. This function can't be const qualified since
these non-modifying members aren't const qualified.
This implements the likelihood attribute for the switch statement. Based on the
discussion in D85091 and D86559 it only handles the attribute when placed on
the case labels or the default labels.
It also marks the likelihood attribute as feature complete. There are more QoI
patches in the pipeline.
Differential Revision: https://reviews.llvm.org/D89210
initialization a little smarter.
Look through casts that preserve zero-ness when determining if an
initializer is zero, so that we can handle cases like an {0} initializer
whose corresponding field is a type other than 'int'.
This patch makes sure that the instance of TypeSize comparison operator
is done with a fixed type size.
Differential Revision: https://reviews.llvm.org/D89312
This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
the splitting pass to be toggled on/off. The current method of passing
`-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
correctly (say, with `-O0` or `-Oz`).
To implement the -fsplit-cold-code option, an attribute is applied to
functions to indicate that they may be considered for splitting. This
removes some complexity from the old/new PM pipeline builders, and
behaves as expected when LTO is enabled.
Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
Differential Revision: https://reviews.llvm.org/D57265
Reviewed By: Aditya Kumar, Vedant Kumar
Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
rL131311 added `asm()` support for builtin functions, but `asm()` for builtins with
specialized emitting (e.g. memcpy, various math functions) still do not work.
This patch makes these functions work for `asm()` and `#pragma redefine_extname`.
glibc uses `asm()` to redirect internal libc function calls to hidden aliases.
Limitation: such a function is a builtin in clang, but will not be recognized as
a libcall in optimization passes because Clang does not annotate the renamed
function as a libcall. In GCC -O1 or above, `abs` can be optimized out but we can't.
Additionally, we cannot redirect `__builtin_sin` to `real_sin` in the following example:
double sin(double x) asm("real_sin");
double f(double d) { return __builtin_sin(d); }
---
According to @rsmith, the following three statements cannot be simultaneously true:
(1) The frontend function foo has known, builtin semantics X.
(2) The symbol foo has known, builtin semantics X.
(3) It's not correct to lower a call to the frontend function foo to the symbol foo.
People do want (1) (if it is profitable to expand a memcpy, do it).
This also means that people do not want to add -fno-builtin-memcpy.
People do want (3): that is why they use asm("__GI_memcpy") in the first place.
So unfortunately we make a compromise by not refuting (2) (see the limitation above).
For most libcalls, there is a small loss because compilers don't synthesize them.
For the few glibc cares about, it uses `asm("memcpy = __GI_memcpy");` to make
the assembly level redirection.
(Changing function names (e.g. `__memcpy`) is a hit to ergonomics which is not acceptable).
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D88712
This reverts commits 683b308c07 and
8487bfd4e9.
We will go for a more restricted approach that does not give freedom to
everyone to change ABIs on whichever platform.
See the discussion on https://reviews.llvm.org/D85802.
Prototype the newly proposed load_lane instructions, as specified in
https://github.com/WebAssembly/simd/pull/350. Since these instructions are not
available to origin trial users on Chrome stable, make them opt-in by only
selecting them from intrinsics rather than normal ISel patterns. Since we only
need rough prototypes to measure performance right now, this commit does not
implement all the load and store patterns that would be necessary to make full
use of the offset immediate. However, the full suite of offset tests is included
to make it easy to track improvements in the future.
Since these are the first instructions to have a memarg immediate as well as an
additional immediate, the disassembler needed some additional hacks to be able
to parse them correctly. Making that code more principled is left as future
work.
Differential Revision: https://reviews.llvm.org/D89366
Using TypeSize::getFixedSize() instead of relying upon the implicit
TypeSize->uint64_cast as the type is always fixed width.
Differential Revision: https://reviews.llvm.org/D89313