This change aims to unify and correct our logic for when we need to allow for
the possibility of the linker adding a TOC restoration instruction after a
call. This comes up in two contexts:
1. When determining tail-call eligibility. If we make a tail call (i.e.
directly branch to a function) then there is no place for the linker to add
a TOC restoration.
2. When determining when we need to add a nop instruction after a call.
Likewise, if there is a possibility that the linker might need to add a
TOC restoration after a call, then we need to put a nop after the call
(the bl instruction).
First problem: We were using similar, but different, logic to decide (1) and
(2). This is just wrong. Both the resideInSameModule function (used when
determining tail-call eligibility) and the isLocalCall function (used when
deciding if the post-call nop is needed) were supposed to be determining the
same underlying fact (i.e. might a TOC restoration be needed after the call).
The same logic should be used in both places.
Second problem: The logic in both places was wrong. We only know that two
functions will share the same TOC when both functions come from the same
section of the same object. Otherwise the linker might cause the functions to
use different TOC base addresses (unless the multi-TOC linker option is
disabled, in which case only shared-library boundaries are relevant). There are
a number of factors that can cause functions to be placed in different sections
or come from different objects (-ffunction-sections, explicitly-specified
section names, COMDAT, weak linkage, etc.). All of these need to be checked.
The existing logic only checked properties of the callee, but the properties of
the caller must also be checked (for example, calling from a function in a
COMDAT section means calling between sections).
There was a conceptual error in the resideInSameModule function in that it
allowed tail calls to functions with weak linkage and protected/hidden
visibility. While protected/hidden visibility does prevent the function
implementation from being replaced at runtime (via interposition), it does not
prevent the linker from using an alternate implementation at link time (i.e.
using some strong definition to replace the provided weak one during linking).
If this happens, then we're still potentially looking at a required TOC
restoration upon return.
Otherwise, in general, the post-call nop is needed wherever ELF interposition
needs to be supported. We don't currently support ELF interposition at the IR
level (see http://lists.llvm.org/pipermail/llvm-dev/2016-November/107625.html
for more information), and I don't think we should try to make it appear to
work in the backend in spite of that fact. Unfortunately, because of the way
that the ABI works, we need to generate code as if we supported interposition
whenever the linker might insert stubs for the purpose of supporting it.
Differential Revision: https://reviews.llvm.org/D27231
llvm-svn: 291003
This reapplies r289828 (reverted in r289833 as it broke the address sanitizer). The
debugloc is now only set when the instruction is not a call, as this causes the
verifier to assert (the inliner requires an inlinable callsite to have a debug loc
if the caller and callee have debug info).
Original commit message:
Simplify CFG will try to sink the last instruction in a series of basic blocks,
creating a "common" instruction in the successor block (sinkLastInstruction).
When it does this, the debug location of the single instruction should be the
merged debug locations of the commoned instructions.
Original review: https://reviews.llvm.org/D27590
llvm-svn: 290973
This CPU type was not previously recognized by LLVM which led to emitting
poor (and sometimes incorrect) code in some JIT workloads on such a machine.
llvm-svn: 290961
Summary:
In mergeSPUpdates, debug values need to be ignored when getting the
previous element, otherwise debug data could have an impact on codegen.
In eliminateCallFramePseudoInstr, debug values after the erased element
could have an impact on codegen and should be skipped.
Closes PR31319 (https://llvm.org/bugs/show_bug.cgi?id=31319)
Reviewers: aprantl, MatzeB, mkuper
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D27688
llvm-svn: 290955
Summary:
The InlineSpiller was accessing the DominatorTreeBase directly
through the public data member DT in the MachineDominatorTree.
This is not a good idea as the "cached" information in
SplitCriticalEdges is not applied before the access.
The DominatorTreeBase must be accessed through the member
function getBase() in MachineDominatorTree.
The fault was introduced in r266162.
I think the public data member DT in the MachineDominatorTree
should have been made private in the original code (r215576)
that introduced the concept of lazily updating the
MachineDominatorTree information from
MachineBasicBlock::SplitCriticalEdge().
Patch by Karl-Johan Karlsson <karl-johan.karlsson@ericsson.com>
Reviewers: wmi, qcolombet
Subscribers: llvm-commits, bjope, uabelho
Differential Revision: https://reviews.llvm.org/D27983
llvm-svn: 290950
Replacing the memory operand in the intrinsic versions of the comis/ucomis instrucions from f128mem to ssmem/sdmem accordingly.
Differential Revision: https://reviews.llvm.org/D28138
llvm-svn: 290948
In some cases its more efficient to combine TRUNC( BINOP( X, Y ) ) --> BINOP( TRUNC( X ), TRUNC( Y ) ) if the binop is legal for the truncated types.
This is true for vector integer multiplication (especially vXi64), as well as ADD/AND/XOR/OR in cases where we only need to truncate one of the inputs at runtime (e.g. a duplicated input or an one use constant we can fold).
Further work could be done here - scalar cases (especially i64) could often benefit (if we avoid partial registers etc.), other opcodes, and better analysis of when truncating the inputs reduces costs.
I have considered implementing this for all targets within the DAGCombiner but wasn't sure we could devise a suitable cost model system that would give us the range we need.
Differential Revision: https://reviews.llvm.org/D28219
llvm-svn: 290947
We can perform the following:
(add (zext (add nuw X, C1)), C2) -> (zext (add nuw X, C1+C2))
This is only possible if C2 is negative and C2 is greater than or equal to negative C1.
llvm-svn: 290927
As per post-commit review for r289993 (D27775), we can only safely
import a type as a decl if it has an Identifier, as the Name alone
is not enough to be unique across modules.
llvm-svn: 290915
I wrote this patch before seeing the comment in:
https://reviews.llvm.org/D27114
...that suggests we should actually be canonicalizing the other way.
So just in case we decide this is the right way, we might as well
have a cleaner implementation.
llvm-svn: 290912
Use getReturnedArgOperand() instead of rolling our own. Note that it's
equivalent because there can only be one 'returned' operand.
The existing code was also incorrect: there already was awkward logic to
ignore callee/EH blocks, but operands can now also be operand bundles,
in which case we'll look for non-existent parameter attributes.
Unfortunately, this isn't observable in-tree, as it only crashes when
exercising the regular call lowering logic with operand bundles.
Still, this is a nice small cleanup anyway.
llvm-svn: 290905
Provide a distinct contents for semBogus and semPPCDoubleDouble in order
to prevent compilers from collapsing them to a single memory address,
while we heavily rely on every semantic having distinct address.
This happens if insecure optimization collapsing identical values is
enabled. As a result, APFloats of semBogus are indistinguishable from
semPPCDoubleDouble -- and whenever the move constructor is used, the old
value beings being incorrectly recognized as a semPPCDoubleDouble.
Since the values in semPPCDoubleDouble are not used anywhere,
we can easily solve this issue via altering the value of one of the
fields and therefore ensuring that the collapse can not occur.
Differential Revision: https://reviews.llvm.org/D28112
llvm-svn: 290896
Summary:
No need to have this per-architecture. While there, unify 32-bit ARM's
behaviour with what changed elsewhere and start function names lowercase
as per the coding standards. Individual entry emission code goes to the
entry's own class.
Fully tested on amd64, cross-builds on both ARMs and PowerPC.
Reviewers: dberris
Subscribers: aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28209
llvm-svn: 290858
Summary:
Regardless how the loop body weight is distributed, we should preserve
total loop body weight. i.e. we should have same weight reaching the body of the loop
or its duplicates in peeled and unpeeled case.
Reviewers: mkuper, davidxl, anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28179
llvm-svn: 290833
Apparently my suggestion of using ternary doesn't really work
as clang complains about incompatible types on LHS and RHS. Some
GCC versions happen to accept the code but clang behaviour is
correct here.
llvm-svn: 290822
Add an explicit LLVM_ENABLE_DIA_SDK option to control building support
for DIA SDK-based debugging. Control its value to match whether DIA SDK
support was found and expose it in LLVMConfig (alike LLVM_ENABLE_ZLIB).
Its value is needed for LLDB to determine whether to run tests requiring
DIA support. Currently it is obtained from llvm/Config/config.h;
however, this file is not available for standalone builds. Following
this change, LLDB will be modified to use the value from LLVMConfig.
Differential Revision: https://reviews.llvm.org/D26255
llvm-svn: 290818
GNU as rejects input where .cfi_sections is used after .cfi_startproc,
if the new section differs from the old. Adjust our output to always
emit .cfi_sections before the first .cfi_startproc to minimize necessary
code.
Differential Revision: https://reviews.llvm.org/D28011
llvm-svn: 290817
Summary:
This avoids the very fragile code for null expressions. We could also use a denseset that tracks which things have null expressions instead, but that seems pretty fragile and premature optimization.
This resolves a number of infinite loop cases, test reductions coming.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28193
llvm-svn: 290816
Summary: Previously, we tried to fix up the equivalences during symbolic evaluation. This does not work. Now, we change the equivalences during congruence finding, where it belongs. We also initialize the equivalence table to give a maximal answer.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28192
llvm-svn: 290815
X86 target does not provide any target specific cost calculation for interleave patterns.It uses the common target-independent calculation, which gives very high numbers. As a result, the scalar version is chosen in many cases. The situation on AVX-512 is even worse, since we have 3-src shuffles that significantly reduce the cost.
In this patch I calculate the cost on AVX-512. It will allow to compare interleave pattern with gather/scatter and choose a better solution (PR31426).
* Shiffle-broadcast cost will be changed in Simon's upcoming patch.
Differential Revision: https://reviews.llvm.org/D28118
llvm-svn: 290810
Summary:
`PromotedFloats` needs to be checked in
`DAGTypeLegalizer::PerformExpensiveChecks`. This patch fixes a few type
legalization failures with expansive checks for ARM fp16 tests.
Reviewers: baldrick, bogner, arsenm
Subscribers: arsenm, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28187
llvm-svn: 290796
I'm not sure if this was intentional, but today
isGuaranteedToTransferExecutionToSuccessor returns true for readonly and
argmemonly calls that may throw. This commit changes the function to
not implicitly infer nounwind this way.
Even if we eventually specify readonly calls as not throwing,
isGuaranteedToTransferExecutionToSuccessor is not the best place to
infer that. We should instead teach FunctionAttrs or some other such
pass to tag readonly functions / calls as nounwind instead.
llvm-svn: 290794
I don't think this hole is currently exposed, but I crashed regression tests for
jump-threading and loop-vectorize after I added calls to isKnownNonNullAt() in
InstSimplify as part of trying to solve PR28430:
https://llvm.org/bugs/show_bug.cgi?id=28430
That's because they call into value tracking with a context instruction, but no
other parts of the query structure filled in.
For more background, see the discussion in:
https://reviews.llvm.org/D27855
llvm-svn: 290786
This was originally motivated by a compile time problem I've since figured out how to solve differently, but the cleanup seemed useful. We had the same logic - which essentially implemented find - in several places. By commoning them out, I can implement find and allow erase to be inlined at the call sites if profitable.
Differential Revision: https://reviews.llvm.org/D28183
llvm-svn: 290779
Summary:
gep 0, 0 is equivalent to bitcast. LLVM canonicalizes it
to getelementptr because it make SROA can then handle it.
Simple case like
void g(A &a) {
z(a);
if (glob)
a.foo();
}
void testG() {
A a;
g(a);
}
was not devirtualized with -fstrict-vtable-pointers because luck of
handling for gep 0 in Memory Dependence Analysis
Reviewers: dberlin, nlewycky, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28126
llvm-svn: 290763
CVP doesn't care about the order of blocks visited, but by using a pre-order traversal over the graph we can a) not visit unreachable blocks and b) optimize as we go so that analysis of later blocks produce slightly more precise results.
I noticed this via inspection and don't have a concrete example which points to the issue.
llvm-svn: 290760
This is similar to the allocfn case - if an alloca is not captured, then it's
necessarily thread-local.
Differential Revision: https://reviews.llvm.org/D28170
llvm-svn: 290738
Summary:
The current loop complete unroll algorithm checks if unrolling complete will reduce the runtime by a certain percentage. If yes, it will apply a fixed boosting factor to the threshold (by discounting cost). The problem for this approach is that the threshold abruptly. This patch makes the boosting factor a function of runtime reduction percentage, capped by a fixed threshold. In this way, the threshold changes continuously.
The patch also simplified the code by reducing one parameter in UP.
The patch only affects code-gen of two speccpu2006 benchmark:
445.gobmk binary size decreases 0.08%, no performance change.
464.h264ref binary size increases 0.24%, no performance change.
Reviewers: mzolotukhin, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26989
llvm-svn: 290737
"Changed" doesn't actually change within the loop, so there's
no reason to keep track of it - we always return false during
analysis and true after the transformation is made.
llvm-svn: 290735
We correctly canonicalized (add (sext x), (sext y)) to (sext (add x, y))
where possible. However, we didn't perform the same canonicalization
for zexts or for muls.
llvm-svn: 290733
This moves the exit block and insertion point computation to be eager,
instead of after seeing the first scalar we can promote.
The cost is relatively small (the computation happens anyway, see discussion
on D28147), and the code is easier to follow, and can bail out earlier
if there's a catchswitch present.
llvm-svn: 290729
We would check whether we have a prehader *or* dedicated exit blocks,
and go into the promotion loop. Then, for each alias set we'd check
if we have a preheader *and* dedicated exit blocks, and bail if not.
Instead, bail immediately if we don't have both.
llvm-svn: 290728
We want to recompute LCSSA only when we actually promoted a value.
This means we only need to look at changes made by promotion when
deciding whether to recompute it or not, not at regular sinking/hoisting.
(This was what the code was documented as doing, just not what it did)
Hopefully NFC.
llvm-svn: 290726
Summary:
This class is unnecessary.
Its comment indicated that it was a compile error to allocate an
instance of a class that inherits from RefCountedBaseVPTR on the stack.
This may have been true at one point, but it's not today.
Moreover you really do not want to allocate *any* refcounted object on
the stack, vptrs or not, so if we did have a way to prevent these
objects from being stack-allocated, we'd want to apply it to regular
RefCountedBase too, obviating the need for a separate RefCountedBaseVPTR
class.
It seems that the main way RefCountedBaseVPTR provides safety is by
making its subclass's destructor virtual. This may have been helpful at
one point, but these days clang will emit an error if you define a class
with virtual functions that inherits from RefCountedBase but doesn't
have a virtual destructor.
Reviewers: compnerd, dblaikie
Subscribers: cfe-commits, klimek, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D28162
llvm-svn: 290717
This reverts commit r290694. It broke sanitizer tests on Win64. I'll
probably bring this back, but the jump tables will just live in .text
like they do for MSVC.
llvm-svn: 290714
This fixes the issue exposed in PR31393, where we weren't trying
sufficiently hard to diagnose bad TBAA metadata.
This does reduce the variety in the error messages we print out, but I
think the tradeoff of verifying more, simply and quickly overrules the
need for more helpful error messags here.
llvm-svn: 290713
Among other stuff, this allows to use predefined .option.machine_version_major
/minor/stepping symbols in the directive.
Relevant test expanded at once (also file renamed for clarity).
Differential Revision: https://reviews.llvm.org/D28140
llvm-svn: 290710
This change adds a new intrinsic which is intended to provide memcpy functionality
with additional atomicity guarantees. Please refer to the review thread
or language reference for further details.
Differential Revision: https://reviews.llvm.org/D27133
llvm-svn: 290708
We bypassed the intrinsic and returned the passthru operand, but we should also add the intrinsic to the worklist since its now dead. This can allow DCE to find it sooner and remove it. Similar was done for InsertElement when the inserted element isn't demanded.
llvm-svn: 290704