Initially, if the `c` constraint applied to the wrong data type that
causes LLVM to assert. This commit replaces the assert by an error
message.
llvm-svn: 321565
Currently all images are lowered to have a single
image PseudoSourceValue. Image stores happen to have
overly strict mayLoad/mayStore/hasSideEffects flags
set on them, so this happens to work. When these
are fixed to be correct, the scheduler breaks
this because the identical PSVs are assumed to
be the same address. These need to be unique
to the image resource value.
llvm-svn: 321555
As noted in PR34686, we are relying on a PSHUFD+PSHUFLW+PSHUFHW shuffle chain for most general vXi16 unary shuffles.
This patch checks for simpler PSHUFLW+PSHUFD and PSHUFHW+PSHUFD cases beforehand, building on some existing code that just handled splat shuffles.
By doing so we also prevent premature use of PSHUFB shuffles which can be slower and require the creation/loading of constant shuffle masks.
We now have the 'fast-variable-shuffle' option for hardware that prefers combining 2 or more shuffles to VPSHUFB etc.
Differential Revision: https://reviews.llvm.org/D38318
llvm-svn: 321553
Revision 320791 introduced a pass that transforms reg+reg instructions to
reg+imm if they're fed by "load immediate". However, it didn't
handle out-of-range shifts correctly as reported in PR35688.
This patch fixes that and therefore the PR.
Furthermore, there was undefined behaviour in the patch where the RHS of an
initialization expression was 32 bits and constant `1` was shifted left 32
bits. This was fixed by ensuring the RHS is 64 bits just like the LHS.
Differential Revision: https://reviews.llvm.org/D41369
llvm-svn: 321551
Previously we used an extend from v8i1 to v8i32/v8i64. Then extracted to the final width. But if we have VLX we should extract first. This way we don't end up with an overly large extend.
This allows us to use vcmpeq to make all ones for the sign extend when DQI isn't available. Otherwise we get a VPTERNLOG.
If we make v2i1/v4i1 legal like proposed in D41560, we could always do this and rely on the lowering of the extend to widen when necessary.
llvm-svn: 321538
-Use MinAlign instead of std::min.
-Use SelectionDAG::getMemBasePlusOffset.
-Apply offset to the pointer info for the second load/store created.
llvm-svn: 321536
The exception handler thunk needs to reference the LSDA of the parent
function, which won't be emitted if it's available_externally.
Fixes PR35736. ThinLTO ends up producing available_externally functions
that use _CxxFrameHandler3.
llvm-svn: 321532
If there are 17 or more leading zeros to the v4i32 elements, then we can use PMADD for the integer multiply when PMULLD is unavailable or slow.
The 17 bits need to be zero as the PMADDWD performs a v8i16 signed-mul-extend + pairwise-add - the upper 16 so we're adding a zero pair and the 17th bit so we don't incorrectly sign extend.
Differential Revision: https://reviews.llvm.org/D41484
llvm-svn: 321516
My original implementation ran as a DAG combine post type legalization, but it turns out we don't run that DAG combine step if type legalization didn't change anything. Attempts to make the combine run before type legalization as well hit other issues.
So just do it in LowerMUL where we can catch more cases.
llvm-svn: 321496
r319980 added new patterns to the machine combiner for transforming (fsub (fmul
x y) z) into (fmla (fneg z) x y). That is, fsub's where the first source
operand is an fmul are transformed. We previously only matched the case where
the second source operand of an fsub was an fmul, transforming (fsub z (fmul x
y)) into (fmls z x y). Now, if we have an fsub where both source operands are
fmuls, both of the above patterns are applicable.
However, the order in which we add the patterns to the list of candidates
determines the transformation that takes place, since only the first pattern
that matches will be used. This patch changes the order these two patterns are
added to the list of candidates such that we prefer the case where the second
source operand is an fmul (the fmls case), rather than the other one (the
fmla/fneg case). When both source operands are fmuls, this ordering results in
fewer instructions.
Differential Revision: https://reviews.llvm.org/D41587
llvm-svn: 321491
Returning SDValue() means nothing changed, SDValue(N,0) means there was a change but the worklist management was taken care of.
I don't know if this has a real effect other than making sure the combine counter in the DAG combiner gets updated, but it is the correct thing to do.
llvm-svn: 321463
Normally we catch this during lowering, but vXi64 mul is considered legal when we have AVX512DQ.
This DAG combine allows us to avoid PMULLQ with AVX512DQ if we can prove its unnecessary. PMULLQ is 3 uops that take 4 cycles each. While pmuldq/pmuludq is only one 4 cycle uop.
llvm-svn: 321437
Match regular x87 memory fold instructions with load/sideeffects tags, to prevent the schedulers from re-ordering them across the fnstcw/fldcw sequences for truncating stores while they are still pseudo during the stack conversion pass.
llvm-svn: 321424
Previously we extended v2i1 to v2f64 and then tried to use cvtuqq2pd/cvtqq2pd, but that only works with avx512dq. So we ended up scalarizing it. Now we widen to v4i1 first and extend to v4i32.
llvm-svn: 321420
Immediately after it is created we check if its equal to another EVT. Then we inconsistently use one or the other variables in the code below.
Instead do the equality check directly on the getValueType result and remove the variable. Use the origina VT variable throughout the remaining code.
llvm-svn: 321406
getOperand returns an SDValue that contains the node and the result number. There is no guarantee that the result number if 0. By using the -> operator we are calling SDNode::getValueType rather than SDValue::getValueType. This requires supplying a result number and we shouldn't assume it was 0.
I don't have a test case. Just noticed while cleaning up some other code and saw that it occurred in other places.
llvm-svn: 321397
Re-land r321234. It had to be reverted because it broke the shared
library build. The shared library build broke because there was a
missing LLVMBuild dependency from lib/Passes (which calls
TargetMachine::getTargetIRAnalysis) to lib/Target. As far as I can
tell, this problem was always there but was somehow masked
before (perhaps because TargetMachine::getTargetIRAnalysis was a
virtual function).
Original commit message:
This makes the TargetMachine interface a bit simpler. We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.
See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html
I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.
Reviewers: echristo, MatzeB, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D41464
llvm-svn: 321375
Despite what the comment said there isn't better codegen for 512-bit vectors. The 128/256/512 bit implementation jus stores to memory and loads an element. There's no advantage to doing that with a larger size. In fact in many cases it causes a stack realignment and generates worse code.
llvm-svn: 321369
Pointer constants are pretty rare, since we usually represent them as
integer constants and then cast to pointer. One notable exception is the
null pointer constant, which is represented directly as a G_CONSTANT 0
with pointer type. Mark it as legal and make sure it is selected like
any other integer constant.
llvm-svn: 321354