The current statement domain derivation algorithm does not (always)
consider that different exit blocks of a loop can have different
conditions to be reached.
From the code
for (int i = n; ; i-=2) {
if (i <= 0) goto even;
if (i <= 1) goto odd;
A[i] = i;
}
even:
A[0] = 42;
return;
odd:
A[1] = 21;
return;
Polly currently derives the following domains:
Stmt_even_critedge
Domain :=
[n] -> { Stmt_even_critedge[] };
Stmt_odd
Domain :=
[n] -> { Stmt_odd[] : (1 + n) mod 2 = 0 and n > 0 };
while the domain for the odd case is correct, Stmt_even is assumed to be
executed unconditionally, which is obviously wrong. While projecting out
the loop dimension in `adjustDomainDimensions`, it does not consider
that there are other exit condition that have matched before.
I don't know a how to fix this without changing a lot of code. Therefore
This patch rejects loops with multiple exist blocks to fix the
miscompile of test-suite's uuencode.
The odd condition is transformed by LLVM to
%cmp1 = icmp eq i64 %indvars.iv, 1
such that the project_out in adjustDomainDimensions() indeed only
matches for odd n (using this condition only, we'd have an infinite loop
otherwise).
The even condition manifests as
%cmp = icmp slt i64 %indvars.iv, 3
Because buildDomainsWithBranchConstraints() does not consider other exit
conditions, it has to assume that the induction variable will eventually
be lower than 3 and taking this exit.
IMHO we need to reuse the algorithm that determines the number of
iterations (addLoopBoundsToHeaderDomain) to determine which exit
condition applies first. It has to happen in
buildDomainsWithBranchConstraints() because the result will need to
propagate to successor BBs. Currently addLoopBoundsToHeaderDomain() just
look for union of all backedge conditions (which means leaving not the
loop here). The patch in llvm.org/PR35465 changes it to look for exit
conditions instead. This is required because there might be other exit
conditions that do not alternatively go back to the loop header.
Differential Revision: https://reviews.llvm.org/D45649
llvm-svn: 330858
This update:
- Removes several deprecated functions (e.g., isl_band).
- Improves the pretty-printing of sets by detecting modulos and "false"
equalities.
- Minor improvements to coalescing and increased robustness of the isl
scheduler.
This update does not yet include isl commit isl-0.18-90-gd00cb45
(isl_pw_*_alloc: add missing check for compatible spaces, Wed Sep 6 12:18:04
2017 +0200), as this additional check is too tight and unfortunately causes
two test case failures in Polly. A patch has been submitted to isl and will be
included in the next isl update for Polly.
llvm-svn: 325557
When deriving the range of valid values of a scalar evolution expression might
be a range [12, 8), where the upper bound is smaller than the lower bound and
where the range is expected to possibly wrap around. We theoretically could
model such a range as a union of two non-wrapping ranges, but do not do this
as of yet. Instead, we just do not derive any bounds. Before this change,
we could have obtained bounds where the maximal possible value is strictly
smaller than the minimal possible value, which is incorrect and also caused
assertions during scop modeling.
llvm-svn: 294891
The test non_affine_loop_used_later.ll also tests the profability heuristic. Add
the option -polly-unprofitable-scalar-accs explicitely to ensure that the test
succeeds if the default value is changed.
llvm-svn: 284338
Before this patch we bailed if a required invariant load was potentially
overwritten. However, now we will optimistically assume it is actually
invariant and, to this end, restrict the valid parameter space as well as the
execution context with regards to potential overwrites of the location.
llvm-svn: 270416
So far we bailed if a required invariant load was potentially overwritten in
the SCoP. From now on we will optimistically assume it is actually invariant
and, to this end, restrict the valid parameter space.
llvm-svn: 270060
If a profitable run is performed we will check if the SCoP seems to be
profitable after creation but before e.g., dependence are computed. This is
needed as SCoP detection only approximates the actual SCoP representation.
In the end this should allow us to be less conservative during the SCoP
detection while keeping the compile time in check.
llvm-svn: 269074
Regions with one affine loop can be profitable if the loop is
distributable. To this end we will allow them to be treated as
profitable if they contain at least two non-trivial basic blocks.
llvm-svn: 269064
We now use context information to simplify the domains and access
functions of the SCoP instead of just aligning them with the parameter
space.
llvm-svn: 269048
There are three reasons why we want to record assumptions first before we
add them to the assumed/invalid context:
1) If the SCoP is not profitable or otherwise invalid without the
assumed/invalid context we do not have to compute it.
2) Information about the context are gathered rather late in the SCoP
construction (basically after we know all parameters), thus the user
might see overly complicated assumptions to be taken while they would
have been simplified later on.
3) Currently we cannot take assumptions at any point but have to wait,
e.g., for the domain generation to finish. This makes wrapping
assumptions much more complicated as they need to be and it will
have a similar effect on "signed-unsigned" assumptions later.
llvm-svn: 266068
In order to speed up compile time and to avoid random timeouts we now
separately track assumptions and restrictions. In this context
assumptions describe parameter valuations we need and restrictions
describe parameter valuations we do not allow. During AST generation
we create a runtime check for both, whereas the one for the
restrictions is negated before a conjunction is build.
Except the In-Bounds assumptions we currently only track restrictions.
Differential Revision: http://reviews.llvm.org/D17247
llvm-svn: 262328
So far we separated constant factors from multiplications, however,
only when they are at the outermost level of a parameter SCEV. Now,
we also separate constant factors from the parameter SCEV if the
outermost expression is a SCEVAddRecExpr. With the changes to the
SCEVAffinator we can now improve the extractConstantFactor(...)
function at will without worrying about any other code part. Thus,
if needed we can implement a more comprehensive
extractConstantFactor(...) function that will traverse the SCEV
instead of looking only at the outermost level.
Four test cases were affected. One did not change much and the other
three were simplified.
llvm-svn: 260859
Before adding a MK_Value READ MemoryAccess, check whether the read is
necessary or synthesizable. Synthesizable values are later generated by
the SCEVExpander and therefore do not need to be transferred
explicitly. This can happen because the check for synthesizability has
presumbly been forgotten in the case where a phi's incoming value has
been defined in a different statement.
Differential Revision: http://reviews.llvm.org/D15687
llvm-svn: 258998
Ensure that there is at most one phi write access per PHINode and
ScopStmt. In particular, this would be possible for non-affine
subregions with multiple exiting blocks. We replace multiple MAY_WRITE
accesses by one MUST_WRITE access. The written value is constructed
using a PHINode of all exiting blocks. The interpretation of the PHI
WRITE's "accessed value" changed from the incoming value to the PHI like
for PHI READs since there is no unique incoming value.
Because region simplification shuffles around PHI nodes -- particularly
with exit node PHIs -- the PHINodes at analysis time does not always
exist anymore in the code generation pass. We instead remember the
incoming block/value pair in the MemoryAccess.
Differential Revision: http://reviews.llvm.org/D15681
llvm-svn: 258809
The test case we look at does not necessarily require irreducible control flow,
but a normal loop is sufficient to create a non-affine region containing more
than one basic block that dominates the exit node. We replace this irreducible
control flow with a normal loop for the following reasons:
1) This is easier to understand
2) We will subsequently commit a patch that ensures Polly does not process
irreducible control flow.
Within non-affine regions, we could possibly handle irreducible control flow.
llvm-svn: 258496
ISL 0.16 will change how sets are printed which breaks 117 unit tests
that text-compare printed sets. This patch re-formats most of these unit
tests using a script and small manual editing on top of that. When
actually updating ISL, most work is done by just re-running the script
to adapt to the changed output.
Some tests that compare IR and tests with single CHECK-lines that can be
easily updated manually are not included here.
The re-format script will also be committed afterwards. The per-test
formatter invocation command lines options will not be added in the near
future because it is ad hoc and would overwrite the manual edits.
Ideally it also shouldn't be required anymore because ISL's set printing
has become more stable in 0.16.
Differential Revision: http://reviews.llvm.org/D16095
llvm-svn: 257851
This reverts commit r255471.
Johannes raised in the post-commit review of r255471 the concern that PHI
writes in non-affine regions with two exiting blocks are not really MUST_WRITE,
but we just know that at least one out of the set of all possible PHI writes
will be executed. Modeling all PHI nodes as MUST_WRITEs is probably save, but
adding the needed documentation for such a special case is probably not worth
the effort. Michael will be proposing a new patch that ensures only a single
PHI_WRITE is created for non-affine regions, which - besides other benefits -
should also allow us to use a single well-defined MUST_WRITE for such PHI
writes.
(This is not a full revert, but the condition and documentation have been
slightly extended)
llvm-svn: 255503
LLVM's IR guarantees that a value definition occurs before any use, and
also the value of a PHI must be one of the incoming values, "written"
in one of the incoming blocks. Hence, such writes are never conditional
in the context of a non-affine subregion.
llvm-svn: 255471
This patch allows invariant loads to be used in the SCoP description,
e.g., as loop bounds, conditions or in memory access functions.
First we collect "required invariant loads" during SCoP detection that
would otherwise make an expression we care about non-affine. To this
end a new level of abstraction was introduced before
SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and
ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide
if we want a load inside the region to be optimistically assumed
invariant or not. If we do, it will be marked as required and in the
SCoP generation we bail if it is actually not invariant. If we don't
it will be a non-affine expression as before. At the moment we
optimistically assume all "hoistable" (namely non-loop-carried) loads
to be invariant. This causes us to expand some SCoPs and dismiss them
later but it also allows us to detect a lot we would dismiss directly
if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also
allow potential aliases between optimistically assumed invariant loads
and other pointers as our runtime alias checks are sound in case the
loads are actually invariant. Together with the invariant checks this
combination allows to handle a lot more than LICM can.
The code generation of the invariant loads had to be extended as we
can now have dependences between parameters and invariant (hoisted)
loads as well as the other way around, e.g.,
test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll
First, it is important to note that we cannot have real cycles but
only dependences from a hoisted load to a parameter and from another
parameter to that hoisted load (and so on). To handle such cases we
materialize llvm::Values for parameters that are referred by a hoisted
load on demand and then materialize the remaining parameters. Second,
there are new kinds of dependences between hoisted loads caused by the
constraints on their execution. If a hoisted load is conditionally
executed it might depend on the value of another hoisted load. To deal
with such situations we sort them already in the ScopInfo such that
they can be generated in the order they are listed in the
Scop::InvariantAccesses list (see compareInvariantAccesses). The
dependences between hoisted loads caused by indirect accesses are
handled the same way as before.
llvm-svn: 249607
This single option replaces -polly-detect-unprofitable and -polly-no-early-exit
and is supposed to be the only option that disables compile-time heuristics that
aim to bail out early on scops that are believed to not benefit from Polly
optimizations.
Suggested-by: Johannes Doerfert
llvm-svn: 249426
These flags are now always passed to all tests and need to be disabled if
not needed. Disabling these flags, rather than passing them to almost all
tests, significantly simplfies our RUN: lines.
llvm-svn: 249422
Polly's profitability heuristic saves compile time by skipping trivial scops or
scops were we know no good optimization can be applied. For almost all our tests
this heuristic makes little sense as we aim for minimal test cases when testing
functionality. Hence, in almost all cases this heuristic is better be disabled.
In preparation of disabling Polly's compile time heuristic by default in the
test suite we first explicitly enable it in the couple of test cases that really
use it (or run with/without heuristic side-by-side).
llvm-svn: 249418
We have to skip accesses in non-affine subregions during hoisting as
they might not be executed under the same condition as the entry of
the non-affine subregion.
llvm-svn: 249139
This moves the construction of ScopStmt to the beginning of the
ScopInfo pass. The late creation was a result of the earlier separation
of ScopInfo and TempScopInfo. This will avoid introducing more
ScopStmt-like maps in future commits. The AccFuncMap will also be
removed in some future commit. DomainMap might also be included into
ScopStmt.
The order in which ScopStmt are created changes and initially creates
empty statements that are removed in a simplification.
Differential Revision: http://reviews.llvm.org/D13341
llvm-svn: 249132
When the whole SCoP is a non-affine region we need to use the
surrounding loop in the construction of the schedule as that is
the one that will be looked up after the schedule generation.
This fixes bug 24947
llvm-svn: 248667
This will allow to generate non-wrap assumptions for integer expressions
that are part of the SCoP. We compare the common isl representation of
the expression with one computed with modulo semantic. For all parameter
combinations they are not equal we can have integer overflows.
The nsw flags are respected when the modulo representation is computed,
nuw and nw flags are ignored for now.
In order to not increase compile time to much, the non-wrap assumptions
are collected in a separate boundary context instead of the assumed
context. This helps compile time as the boundary context can become
complex and it is therefor not advised to use it in other operations
except runtime check generation. However, the assumed context is e.g.,
used to tighten dependences. While the boundary context might help to
tighten the assumed context it is doubtful that it will help in practice
(it does not effect lnt much) as the boundary (or no-wrap assumptions)
only restrict the very end of the possible value range of parameters.
PET uses a different approach to compute the no-wrap context, though lnt runs
have shown that this version performs slightly better for us.
llvm-svn: 247732
At some point we build loop trip counts using this method. It was replaced by
a simpler trick that works only for affine (e.g., not modulo) constraints and
relies on the removal of unbounded parts. In order to allow modulo constrains
again we go back to the former, more accurate method.
llvm-svn: 247540
This patch replaces the last legacy part of the domain generation, namely the
ScalarEvolution part that was used to obtain loop bounds. We now iterate over
the loops in the region and propagate the back edge condition to the header
blocks. Afterwards we propagate the new information once through the whole
region. In this process we simply ignore unbounded parts of the domain and
thereby assume the absence of infinite loops.
+ This patch already identified a couple of broken unit tests we had for
years.
+ We allow more loops already and the step to multiple exit and multiple back
edges is minimal.
+ It allows to model the overflow checks properly as we actually visit
every block in the SCoP and know where which condition is evaluated.
- It is currently not compatible with modulo constraints in the
domain.
Differential Revision: http://reviews.llvm.org/D12499
llvm-svn: 247279
The support for modulo expressions is not comlete and makes the new
domain generation harder. As the currently broken domain generation
needs to be replaced, we will first swap in the new, fixed domain
generation and make it compatible with the modulo expressions later.
llvm-svn: 247278
While we do not need to model PHI nodes in the region exit (as it is not part
of the SCoP), we need to prepare for the case that the exit block is split in
code generation to create a single exiting block. If this will happen, hence
if the region did not have a single exiting block before, we will model the
operands of the PHI nodes as escaping scalars in the SCoP.
Differential Revision: http://reviews.llvm.org/D12051
llvm-svn: 247078
In order to compute domain conditions for conditionals we will now
traverse the region in the ScopInfo once and build the domains for
each block in the region. The SCoP statements can then use these
constraints when they build their domain.
The reason behind this change is twofold:
1) This removes a big chunk of preprocessing logic from the
TempScopInfo, namely the Conditionals we used to build there.
Additionally to moving this logic it is also simplified. Instead
of walking the dominance tree up for each basic block in the
region (as we did before), we now traverse the region only
once in order to collect the domain conditions.
2) This is the first step towards the isl based domain creation.
The second step will traverse the region similar to this step,
however it will propagate back edge conditions. Once both are in
place this conditional handling will allow multiple exit loops
additional logic.
Reviewers: grosser
Differential Revision: http://reviews.llvm.org/D12428
llvm-svn: 246398
If a region does not have more than one loop, we do not identify it as
a Scop in ScopDetection. The main optimizations Polly is currently performing
(tiling, preparation for outer-loop vectorization and loop fusion) are unlikely
to have a positive impact on individual loops. In some cases, Polly's run-time
alias checks or conditional hoisting may still have a positive impact, but those
are mostly enabling transformations which LLVM already performs for individual
loops. As we do not focus on individual loops, we leave them untouched to not
introduce compile time regressions and execution time noise. This results in
good compile time reduction (oourafft: -73.99%, smg2000: -56.25%).
Contributed-by: Pratik Bhatu <cs12b1010@iith.ac.in>
Reviewers: grosser
Differential Revision: http://reviews.llvm.org/D12268
llvm-svn: 246161
Besides other changes this version of isl contains a fundamental fix to memory
corruption issues we have seen with imath-32 backed isl_ints.
This update also contains a fix that ensures that the schedule-tree based
version of isl's dependence analysis takes the domain of the schedule into
account.
llvm-svn: 244585
Summary:
When translating PHI nodes into memory dependences during code generation we
require two kinds of memory. 'Normal memory' as for all scalar dependences and
'PHI node memory' to store the incoming values of the PHI node. With this
patch we now mark and track these two kinds of memories, which we previously
incorrectly marked as a single memory object.
Being aware of PHI node storage makes code generation easier, as we do not need
to guess what kind of storage a scalar reference requires. This simplifies the
code nicely.
Reviewers: jdoerfert
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D11554
llvm-svn: 243420
Instead of flat schedules, we now use so-called schedule trees to represent the
execution order of the statements in a SCoP. Schedule trees make it a lot easier
to analyze, understand and modify properties of a schedule, as specific nodes
in the tree can be choosen and possibly replaced.
This patch does not yet fully move our DependenceInfo pass to schedule trees,
as some additional performance analysis is needed here. (In general schedule
trees should be faster in compile-time, as the more structured representation
is generally easier to analyze and work with). We also can not yet perform the
reduction analysis on schedule trees.
For more information regarding schedule trees, please see Section 6 of
https://lirias.kuleuven.be/handle/123456789/497238
llvm-svn: 242130