Revision 332390 introduced a FetchStage class in llvm-mca.
By design, FetchStage owns all the instructions in-flight in the OoO Backend.
Before this change, new instructions were added to a DenseMap indexed by
instruction id. The problem with using a DenseMap is that elements are not
ordered by key. This was causing a massive slow down in method
FetchStage::postExecute(), which searches for instructions retired that can be
deleted.
This patch replaces the DenseMap with a std::map ordered by instruction index.
At the end of every cycle, we search for the first instruction which is not
marked as "retired", and we remove all the previous instructions before it.
This works well because instructions are retired in-order.
Before this patch, a debug build of llvm-mca (on my Ryzen linux machine) took
~8.0 seconds to simulate 3000 iterations of a x86 dot-product (a `vmulps,
vpermilps, vaddps, vpermilps, vaddps` sequence). With this patch, it now takes
~0.8s to run all the 3000 iterations.
llvm-svn: 332461
Summary:
This is just an idea, really two ideas. I expect some push-back,
but I realize that posting a diff is the most comprehensive way to express
these concepts.
This patch introduces a Stage class which represents the
various stages of an instruction pipeline. As a start, I have created a simple
FetchStage that is based on existing logic for how MCA produces
instructions, but now encapsulated in a Stage. The idea should become more concrete
once we introduce additional stages. The idea being, that when a stage completes,
the next stage in the pipeline will be executed. Stages are chained together
as a singly linked list to closely model a real pipeline. For now there is only one stage,
so the stage-to-stage flow of instructions isn't immediately obvious.
Eventually, Stage will also handle event notifications, but that functionality
is not complete, and not destined for this patch. Ideally, an interested party
can register for notifications from a particular stage. Callbacks will be issued to
these listeners at various points in the execution of the stage.
For now, eventing functionality remains similar to what it has been in mca::Backend.
We will be building-up the Stage class as we move on, such as adding debug output.
This patch also removes the unique_ptr<Instruction> return value from
InstrBuilder::createInstruction. An Instruction pointer is still produced,
but now it's up to the caller to decide how that item should be managed post-allocation
(e.g., smart pointer). This allows the Fetch stage to create instructions and
manage the lifetime of those instructions as it wishes, and not have to be bound to any
specific managed pointer type. Other callers of createInstruction might have different
requirements, and thus can manage the pointer to fit their needs. Another idea would be to push the
ownership to the RCU.
Currently, the FetchStage will wrap the Instruction
pointer in a shared_ptr. This allows us to remove the Instruction container in
Backend, which was probably going to disappear, or move, at some point anyways.
Note that I did run these changes through valgrind, to make sure we are not leaking
memory. While the shared_ptr comes with some additional overhead it relieves us
from having to manage a list of generated instructions, and/or make lookup calls
to remove the instructions.
I realize that both the Stage class and the Instruction pointer management
(mentioned directly above) are separate but related ideas, and probably should
land as separate patches; I am happy to do that if either idea is decent.
The main reason these two ideas are together is that
Stage::execute() can mutate an InstRef. For the fetch stage, the InstRef is populated
as the primary action of that stage (execute()). I didn't want to change the Stage interface
to support the idea of generating an instruction. Ideally, instructions are to
be pushed through the pipeline. I didn't want to draw too much of a
specialization just for the fetch stage. Excuse the word-salad.
Reviewers: andreadb, courbet, RKSimon
Reviewed By: andreadb
Subscribers: llvm-commits, mgorny, javed.absar, tschuett, gbedwell
Differential Revision: https://reviews.llvm.org/D46741
llvm-svn: 332390
Strictly speaking, this is not necessary for .cpp files. However, other .cpp
files from this same tool have it. This also matches what we do in other tools.
llvm-svn: 332334
The tool assumes that a zero-latency instruction that doesn't consume hardware
resources is an optimizable dependency-breaking instruction. That means, it
doesn't have to wait on register input operands, and it doesn't consume any
physical register. The PRF knows how to optimize it at register renaming stage.
llvm-svn: 332249
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Summary:
This patch eliminates many places where we originally needed to pass index
values to represent an instruction. The index is still used as a key, in various parts of
MCA. I'm not comfortable eliminating the index just yet. By burying the index in
the instruction, we can avoid exposing that value in many places.
Eventually, we should consider removing the Instructions list in the Backend
all together, it's only used to hold and reclaim the memory for the allocated
Instruction instances. Instead we could pass around a smart pointer. But that's
a separate discussion/patch.
Reviewers: andreadb, courbet, RKSimon
Reviewed By: andreadb
Subscribers: javed.absar, tschuett, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D46367
llvm-svn: 331660
This patch also improves the description of a couple of flags in the view
options. With this change, the -help now specifies which views are enabled by
default.
llvm-svn: 331594
Summary:
This change makes the TimelineView source simpler to read and easier to modify in the future.
This patch introduces a class of static chars used as the display values in the TimelineView report, this change just eliminates a few magic characters.
Reviewers: andreadb, courbet, RKSimon
Reviewed By: andreadb
Subscribers: tschuett, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D46409
llvm-svn: 331540
The logic remains the same. Eventually, I see the RCU acting as its own separate stage in the instruction pipeline.
Differential Revision: https://reviews.llvm.org/D46331
llvm-svn: 331316
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
This fixes PR37293.
We can have scheduling classes with no write latency entries, that still consume
processor resources. We don't want to treat those instructions as zero-latency
instructions; they still have to be issued to the underlying pipelines, so they
still consume resource cycles.
This is likely to be a regression which I have accidentally introduced at
revision 330807. Now, if an instruction has a non-empty set of write processor
resources, we conservatively treat it as a normal (i.e. non zero-latency)
instruction.
llvm-svn: 331193
Summary: The instruction index was never referenced in the body. Just a minor cleanup.
Reviewers: andreadb
Reviewed By: andreadb
Subscribers: javed.absar, gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D46142
llvm-svn: 331001
With this patch, options to add/tweak views are all grouped together in the
-help output.
The new "View Options" category looks like this:
```
View Options:
-dispatch-stats - Print dispatch statistics
-instruction-info - Print the instruction info view
-instruction-tables - Print instruction tables
-register-file-stats - Print register file statistics
-resource-pressure - Print the resource pressure view
-retire-stats - Print retire control unit statistics
-scheduler-stats - Print scheduler statistics
-timeline - Print the timeline view
-timeline-max-cycles=<uint> - Maximum number of cycles in the timeline view. Defaults to 80 cycles
-timeline-max-iterations=<uint> - Maximum number of iterations to print in timeline view
```
llvm-svn: 330816
The instruction printer used by llvm-mca to generate the performance report now
defaults the output assembly format to the format used for the input assembly
file.
On x86, the asm format can be either AT&T or Intel, depending on the
presence/absence of directive `.intel_syntax`.
Users can still specify a different assembly dialect with the command line flag
-output-asm-variant=<uint>.
llvm-svn: 330733
Zero latency instructions are now scheduled the same way as other instructions.
Before this patch, there was a specialzed code path for those instructions.
All scheduler events are now generated from method `scheduleInstruction()` and
from method `cycleEvent()`. This will make easier to implement a "execution
stage", and let that stage publish all the scheduler events.
No functional change intended.
llvm-svn: 330723
We have a few functions that virtually all command wants to run on
process startup/shutdown. This patch adds InitLLVM class to do that
all at once, so that we don't need to copy-n-paste boilerplate code
to each llvm command's main() function.
Differential Revision: https://reviews.llvm.org/D45602
llvm-svn: 330046
Normally, the Scheduler prioritizes older instructions over younger instructions
during the instruction issue stage. In one particular case where a dependent
instruction had a schedule read-advance associated to one of the input operands,
this rule was not correctly applied.
This patch fixes the issue and adds a test to verify that we don't regress that
particular case.
llvm-svn: 330032
This patch moves part of the logic that notifies dispatch stall events from the
DispatchUnit to the Scheduler.
The main goal of this patch is to remove (yet another) dependency between the
DispatchUnit and the Scheduler. Before this patch, the DispatchUnit had to know
about `Scheduler::Event` and how to classify stalls due to the lack of scheduling
resources. This patch removes that knowledge and simplifies the logic in
DispatchUnit::checkScheduler.
This is another change done in preparation for the work to fix PR36663.
No functional change intended.
llvm-svn: 329835
This patch moves the logic that collects and analyzes dispatch events to the
DispatchStatistics view.
Added flag -dispatch-stats to print statistics related to the dispatch logic.
llvm-svn: 329708
This patch teaches llvm-mca how to parse code comments in search for special
"markers" used to select regions of code.
Example:
# LLVM-MCA-BEGIN My Code Region
....
# LLVM-MCA-END
The MCAsmLexer now delegates to an object of class MCACommentParser (i.e. an
AsmCommentConsumer) the parsing of code comments to search for begin/end code
region markers.
A comment starting with substring "LLVM-MCA-BEGIN" marks the beginning of a new
region of code. A comment starting with substring "LLVM-MCA-END" marks the end
of the last region.
This implementation doesn't allow regions to overlap. Each region can have a
optional description; internally, each region is identified by a range of source
code locations (SMLoc).
MCInst objects are added to a region R only if the source location for the
MCInst is in the range of locations specified by R.
By default, the tool allocates an implicit "Default" code region which contains
every source location. See new tests llvm-mca-marker-*.s for a few examples.
A new Backend object is created for every region. So, the analysis is conducted
on every parsed code region. The final report is the union of the reports
generated for every code region. Note that empty regions are skipped.
Special "[#] Code Region - ..." strings are used in the report to mark the
portion which is specific to a code region only. For example, see
llvm-mca-markers-5.s.
Differential Revision: https://reviews.llvm.org/D45433
llvm-svn: 329590
Scheduling models can now describe processor register files and retire control
units. This updates the existing documentation and the README file.
llvm-svn: 329311
This patch adds the ability to describe properties of the hardware retire
control unit.
Tablegen class RetireControlUnit has been added for this purpose (see
TargetSchedule.td).
A RetireControlUnit specifies the size of the reorder buffer, as well as the
maximum number of opcodes that can be retired every cycle.
A zero (or negative) value for the reorder buffer size means: "the size is
unknown". If the size is unknown, then llvm-mca defaults it to the value of
field SchedMachineModel::MicroOpBufferSize. A zero or negative number of
opcodes retired per cycle means: "there is no restriction on the number of
instructions that can be retired every cycle".
Models can optionally specify an instance of RetireControlUnit. There can only
be up-to one RetireControlUnit definition per scheduling model.
Information related to the RCU (RetireControlUnit) is stored in (two new fields
of) MCExtraProcessorInfo. llvm-mca loads that information when it initializes
the DispatchUnit / RetireControlUnit (see Dispatch.h/Dispatch.cpp).
This patch fixes PR36661.
Differential Revision: https://reviews.llvm.org/D45259
llvm-svn: 329304
This is done in preparation for D45259.
With D45259, models can specify the size of the reorder buffer, and the retire
throughput directly via tablegen.
llvm-svn: 329274
Before this patch, the "BackendStatistics" view was responsible for printing the
register file usage (as well as many other statistics).
Now users can enable register file usage statistics using the command line flag
`-register-file-stats`. By default, the tool doesn't print register file
statistics.
llvm-svn: 329083
This patch allows the description of register files in processor scheduling
models. This addresses PR36662.
A new tablegen class named 'RegisterFile' has been added to TargetSchedule.td.
Targets can optionally describe register files for their processors using that
class. In particular, class RegisterFile allows to specify:
- The total number of physical registers.
- Which target registers are accessible through the register file.
- The cost of allocating a register at register renaming stage.
Example (from this patch - see file X86/X86ScheduleBtVer2.td)
def FpuPRF : RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2]>
Here, FpuPRF describes a register file for MMX/XMM/YMM registers. On Jaguar
(btver2), a YMM register definition consumes 2 physical registers, while MMX/XMM
register definitions only cost 1 physical register.
The syntax allows to specify an empty set of register classes. An empty set of
register classes means: this register file models all the registers specified by
the Target. For each register class, users can specify an optional register
cost. By default, register costs default to 1. A value of 0 for the number of
physical registers means: "this register file has an unbounded number of
physical registers".
This patch is structured in two parts.
* Part 1 - MC/Tablegen *
A first part adds the tablegen definition of RegisterFile, and teaches the
SubtargetEmitter how to emit information related to register files.
Information about register files is accessible through an instance of
MCExtraProcessorInfo.
The idea behind this design is to logically partition the processor description
which is only used by external tools (like llvm-mca) from the processor
information used by the llvm machine schedulers.
I think that this design would make easier for targets to get rid of the extra
processor information if they don't want it.
* Part 2 - llvm-mca related *
The second part of this patch is related to changes to llvm-mca.
The main differences are:
1) class RegisterFile now needs to take into account the "cost of a register"
when allocating physical registers at register renaming stage.
2) Point 1. triggered a minor refactoring which lef to the removal of the
"maximum 32 register files" restriction.
3) The BackendStatistics view has been updated so that we can print out extra
details related to each register file implemented by the processor.
The effect of point 3. is also visible in tests register-files-[1..5].s.
Differential Revision: https://reviews.llvm.org/D44980
llvm-svn: 329067
Before, the instruction builder incorrectly assumed that only explicit reads
could have been associated with ReadAdvance entries.
This patch fixes the issue and adds a test to verify it.
llvm-svn: 328972
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: JDevlieghere, zturner, echristo, dberris, friss
Reviewed By: echristo
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D45141
llvm-svn: 328943
The tool was passing the wrong operand index to method
MCSubtargetInfo::getReadAdvanceCycles(). That method requires a "UseIdx", and
not the operand index. This was found when testing X86 code where instructions
had a memory folded operand.
This patch fixes the issue and adds test read-advance-1.s to ensure that
the ReadAfterLd (a ReadAdvance of 3cy) information is correctly used.
llvm-svn: 328790
We were incorrectly initializing the array of used registers in method checkRAT.
As a consequence, the number of register file stalls was misreported.
Added a test to cover this case.
llvm-svn: 328629
The goal of this patch is to address most of PR36874. To fully fix PR36874 we
need to split the "InstructionInfo" view from the "SummaryView". That would make
easy to check the latency and rthroughput as well.
The patch reuses all the logic from ResourcePressureView to print out the
"instruction tables".
We have an entry for every instruction in the input sequence. Each entry reports
the theoretical resource pressure distribution. Resource pressure is uniformly
distributed across all the processor resource units of a group.
At the moment, the backend pipeline is not configurable, so the only way to fix
this is by creating a different driver that simply sends instruction events to
the resource pressure view. That means, we don't use the Backend interface.
Instead, it is simpler to just have a different code-path for when flag
-instruction-tables is specified.
Once Clement addresses bug 36663, then we can port the "instruction tables"
logic into a stage of our configurable pipeline.
Updated the BtVer2 test cases (thanks Simon for the help). Now we pass flag
-instruction-tables to each modified test.
Differential Revision: https://reviews.llvm.org/D44839
llvm-svn: 328487
This is done in preparation for the fix for PR36874.
The number of cycles consumed for each pipe is now a double quantity. This
allows reuse of the resource pressure view to print out instruction tables.
llvm-svn: 328335
By default, the tool always enables the resource pressure view.
This flag lets user specify whether they want to add that view or not.
llvm-svn: 328305
With this patch, the "instruction dispatched" event now provides information
related to the number of microarchitectural registers used in each register
file. Similarly, the "instruction retired" event is now able to tell how may
registers are freed in each register file.
Currently, the BackendStatistics view is the only consumer of register
usage/pressure information. BackendStatistics uses that info to print out a few
general statistics (i.e. max number of mappings used; total mapping created).
Before this patch, the BackendStatistics was forced to query the Backend to
obtain the register pressure information.
This helps removes that dependency. Now views are completely independent from
the Backend. As a consequence, it should be easier to address PR36663 and
further modularize the pipeline.
Added a couple of test cases in the BtVer2 specific directory.
llvm-svn: 328129
This patch introduces two new callbacks in the event listener interface to
handle the "buffered resource reserved" event and the "buffered resource
released" event. Every time a buffered resource is used, an event is generated.
Before this patch, the Scheduler (with the help of the ResourceManager) was
responsible for tracking the scheduler's queue usage. However, that design
forced the Scheduler to 'publish' scheduler's queue pressure information through
the Backend interface.
The goal of this patch is to break the dependency between the BackendStatistics
view, and the Backend. Now the Scheduler knows how to notify "buffer
reserved/released" events. The scheduler's queue usage analysis has been moved
to the BackendStatistics.
Differential Revision: https://reviews.llvm.org/D44686
llvm-svn: 328011
Function computeProcResourceMasks is used by the ResourceManager (owned by the
Scheduler) to compute resource masks for processor resources. Before this
refactoring, there was an implicit dependency between the Scheduler and the
InstrBuilder. That is because InstrBuilder has to know about resource masks when
computing the set of processor resources consumed by a new instruction.
With this patch, the functionality that computes resource masks has been
extracted from the ResourceManager, and moved to a separate file (Support.h).
This helps removing the dependency between the Scheduler and the InstrBuilder.
No functional change intended.
llvm-svn: 327973
This patch introduces a new class named HWStallEvent (see HWEventListener.h),
and updates the event listener interface. A HWStallEvent represents a pipeline
stall caused by the lack of hardware resources. Similarly to HWInstructionEvent,
the event type is an unsigned, and the exact meaning depends on the subtarget.
At the moment, HWStallEvent supports a few generic dispatch events.
The main goals of this patch is to remove the logic that counts dispatch stalls
from the DispatchUnit to the BackendStatistics view.
Previously, DispatchUnit was responsible for counting and classifying dispatch
stall events. With this patch, we delegate the task of counting and classifying
stall events to the listeners (i.e. in our case, it is view
"BackendStatistics"). So, the DispatchUnit doesn't have to do extra
(unnecessary) bookkeeping.
This patch also helps futher simplifying the Backend interface. Now class
BackendStatistics no longer has to query the Backend interface to obtain the
number of dispatch stalls. As a consequence, we can get rid of all the
'getNumXXX()' methods from class Backend.
The long term goal is to remove all the remaining dependencies between the
Backend and the BackendStatistics interface.
Differential Revision: https://reviews.llvm.org/D44621
llvm-svn: 327837
This is a refactoring in preparation for other two changes that will allow
scheduling models to define multiple register files. This is the first step
towards fixing PR36662.
class RegisterFile (in Dispatch.h) now can emulate multiple register files.
Internally, it tracks the number of available physical registers in each
register file (described by class RegisterFileInfo).
Each register file is associated to a list of MCRegisterClass indices. Knowing
the register class indices allows to map physical registers to register files.
The long term goal is to allow processor models to optionally specify how many
register files are implemented via tablegen.
Differential Revision: https://reviews.llvm.org/D44488
llvm-svn: 327798
Now both method DispatchUnit::checkRAT() and DispatchUnit::canDispatch take as
input an Instruction refrence instead of an instruction descriptor.
This was requested by Simon in D44488 to simplify the diff.
llvm-svn: 327640
Before this patch, the register file was always updated at instruction creation
time. That means, new read-after-write dependencies, and new temporary registers
were allocated at instruction creation time.
This patch refactors the code in InstrBuilder, and move all the logic that
updates the register file into the dispatch unit. We only want to update the
register file when instructions are effectively dispatched (not before).
This refactoring also helps removing a bad dependency between the InstrBuilder
and the DispatchUnit.
No functional change intended.
llvm-svn: 327514
Since r327420, the tool can query the MCSchedModel interface to obtain the
reciprocal throughput information.
As a consequence, method `ResourceManager::getRThroughput`, and
method `Backend::getRThroughput` are no longer needed.
This patch simplifies the code by removing the custom RThroughput computation.
This patch also refactors class SummaryView by removing the dependency with
the Backend object.
No functional change intended.
llvm-svn: 327425
Summary: This is a first step towards making the pipeline configurable.
Subscribers: llvm-commits, andreadb
Differential Revision: https://reviews.llvm.org/D44309
llvm-svn: 327389
This change removes method Backend::getProcResourceMasks() and simplifies some
logic in the Views. This effectively removes yet another dependency between the
views and the Backend.
No functional change intended.
llvm-svn: 327214
This patch fixes a problem found when testing zero latency instructions on
target AArch64 -mcpu=exynos-m3 / -mcpu=exynos-m1.
On Exynos-m3/m1, direct branches are zero-latency instructions that don't consume
any processor resources. The DispatchUnit marks zero-latency instructions as
"executed", so that no scheduling is required. The event of instruction
executed is then notified to all the listeners, and the reorder buffer (managed
by the RetireControlUnit) is updated. In particular, the entry associated to the
zero-latency instruction in the reorder buffer is marked as executed.
Before this patch, the DispatchUnit forgot to assign a retire control unit token
(RCUToken) to the zero-latency instruction. As a consequence, the RCUToken was
used uninitialized. This was causing a crash in the RetireControlUnit logic.
Fixes PR36650.
llvm-svn: 327056
This allows the customization of the performance report.
Users can specify their own custom sequence of views.
Each view contributes a portion of the performance report generated by the
BackendPrinter.
Internally, class BackendPrinter keeps a sequence of views; views are printed
out in sequence when method 'printReport()' is called.
This patch addresses one of the two review comments from Clement in D43951.
llvm-svn: 327018
llvm-mca is an LLVM based performance analysis tool that can be used to
statically measure the performance of code, and to help triage potential
problems with target scheduling models.
llvm-mca uses information which is already available in LLVM (e.g. scheduling
models) to statically measure the performance of machine code in a specific cpu.
Performance is measured in terms of throughput as well as processor resource
consumption. The tool currently works for processors with an out-of-order
backend, for which there is a scheduling model available in LLVM.
The main goal of this tool is not just to predict the performance of the code
when run on the target, but also help with diagnosing potential performance
issues.
Given an assembly code sequence, llvm-mca estimates the IPC (instructions per
cycle), as well as hardware resources pressure. The analysis and reporting style
were mostly inspired by the IACA tool from Intel.
This patch is related to the RFC on llvm-dev visible at this link:
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
Differential Revision: https://reviews.llvm.org/D43951
llvm-svn: 326998