a useful template instantiation stack. Fixes PR8640.
This also causes a slight change to where the "instantianted from" note shows up
in truly esoteric cases (see the change to test/SemaCXX/destructor.cpp), but
that isn't directly the fault of this patch.
llvm-svn: 120135
of a binary expression, continue on and parse the right-hand side of
the binary expression anyway, but don't call the semantic actions to
type-check. Previously, we would see the error and then, effectively,
skip tokens until the end of the statement.
The result should be more useful recovery, both in the normal case
(we'll actually see errors beyond the first one in a statement), but
it also helps code completion do a much better job, because we do
"real" code completion on the right-hand side of an invalid binary
expression rather than completing with the recovery completion. For
example, given
x = p->y
if there is no variable named "x", we can still complete after the p->
as a member expression. Along the recovery path, we would have
completed after the "->" as if we were in an expression context, which
is mostly useless.
llvm-svn: 114225
aren't dropping all exception specifications on destructors, the
exception specifications on implicitly-declared destructors were
detected as being wrong (which they were).
Introduce logic to provide a proper exception-specification for
implicitly-declared destructors. This also fixes PR6972.
Note that the other implicitly-declared special member functions also
need to get exception-specifications. I'll deal with that in a
subsequent commit.
llvm-svn: 107385
therefore not creating ElaboratedTypes, which are still pretty-printed
with the written tag).
Most of these testcase changes were done by script, so don't feel too
sorry for my fingers.
llvm-svn: 98149
now cope with the destruction of types named as dependent templates,
e.g.,
y->template Y<T>::~Y()
Nominally, we implement C++0x [basic.lookup.qual]p6. However, we don't
follow the letter of the standard here because that would fail to
parse
template<typename T, typename U>
X0<T, U>::~X0() { }
properly. The problem is captured in core issue 339, which gives some
(but not enough!) guidance. I expect to revisit this code when the
resolution of 339 is clear, and/or we start capturing better source
information for DeclarationNames.
Fixes PR6152.
llvm-svn: 96367
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:
1. When analyzing a declspec or declarator, if an error is found, we
set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
bit on it from what is in the declarator. From this point on, sema
consistently looks at and sets the bit on the decl.
This gives a very clear separation of concerns and simplifies a bunch
of code. In addition to this, this patch makes these changes:
1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
methods now set invalid on the decl returned instead of returning an
invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
bit into the resultant type. Stuff declared with the invalid typedef
will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
invalid bit on the decl they check.
There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp. I'll take a look at this
next.
llvm-svn: 70020
information about types. We often print diagnostics where we say
"foo_t" is bad, but the user doesn't know how foo_t is declared
(because it is a typedef). Fix this by expanding sugar when present
in a diagnostic (and not one of a few special cases, like vectors).
Before:
t.m:5:2: error: invalid operands to binary expression ('typeof(P)' and 'typeof(F)')
MAX(P, F);
^~~~~~~~~
t.m:1:78: note: instantiated from:
#define MAX(A,B) ({ __typeof__(A) __a = (A); __typeof__(B) __b = (B); __a < __b ? __b : __a; })
^
After:
t.m:5:2: error: invalid operands to binary expression ('typeof(P)' (aka 'struct mystruct') and 'typeof(F)' (aka 'float'))
MAX(P, F);
^~~~~~~~~
t.m:1:78: note: instantiated from:
#define MAX(A,B) ({ __typeof__(A) __a = (A); __typeof__(B) __b = (B); __a < __b ? __b : __a; })
^
llvm-svn: 65081
-When parsing declarators, don't depend on "CurScope->isCXXClassScope() == true" for constructors/destructors
-For C++ member declarations, don't depend on "Declarator.getContext() == Declarator::MemberContext"
llvm-svn: 58866
Implicit declaration of destructors (when necessary).
Extended Declarator to store information about parsed constructors
and destructors; this will be extended to deal with declarators that
name overloaded operators (e.g., "operator +") and user-defined
conversion operators (e.g., "operator int").
llvm-svn: 58767