- Do not allow amd_amdgpu_isa directives on non-amdgcn architectures
- Do not allow amd_amdgpu_hsa_metadata on non-amdhsa OSes
- Do not allow amd_amdgpu_pal_metadata on non-amdpal OSes
Differential Revision: https://reviews.llvm.org/D38750
llvm-svn: 315812
- Emit NT_AMD_AMDGPU_ISA
- Add assembler parsing for isa version directive
- If isa version directive does not match command line arguments, then return error
Differential Revision: https://reviews.llvm.org/D38748
llvm-svn: 315808
- Use HSA metadata streamer directly from AMDGPUAsmPrinter
- Make naming consistent with PAL metadata
Differential Revision: https://reviews.llvm.org/D38746
llvm-svn: 315526
- Move PAL metadata definitions to AMDGPUMetadata
- Make naming consistent with HSA metadata
Differential Revision: https://reviews.llvm.org/D38745
llvm-svn: 315523
- Rename AMDGPUCodeObjectMetadata to AMDGPUMetadata (PAL metadata will be included in this file in the follow up change)
- Rename AMDGPUCodeObjectMetadataStreamer to AMDGPUHSAMetadataStreamer
- Introduce HSAMD namespace
- Other minor name changes in function and test names
llvm-svn: 315522
This adds debug tracing to the table-generated assembly instruction matcher,
enabled by the -debug-only=asm-matcher option.
The changes in the target AsmParsers are to add an MCInstrInfo reference under
a consistent name, so that we can use it from table-generated code. This was
already being used this way for targets that use deprecation warnings, but 5
targets did not have it, and Hexagon had it under a different name to the other
backends.
llvm-svn: 315445
Summary:
For the amdpal OS type:
We write an AMDGPU_PAL_METADATA record in the .note section in the ELF
(or as an assembler directive). It contains key=value pairs of 32 bit
ints. It is a merge of metadata from codegen of the shaders, and
metadata provided by the frontend as _amdgpu_pal_metadata IR metadata.
Where both sources have a key=value with the same key, the two values
are ORed together.
This .note record is part of the amdpal ABI and will be documented in
docs/AMDGPUUsage.rst in a future commit.
Eventually the amdpal OS type will stop generating the .AMDGPU.config
section once the frontend has safely moved over to using the .note
records above instead of .AMDGPU.config.
Reviewers: arsenm, nhaehnle, dstuttard
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D37753
llvm-svn: 314829
These write to the low and high half of the destination
register and leave the other 16-bits unchanged. This is true
for most 16-bit instructions on gfx9, but we don't use that
now.
llvm-svn: 313812
These aren't really packed instructions, so the default
op_sel_hi should be 0 since this indicates a conversion.
The operand types are scalar values that behave similar
to an f16 scalar that may be converted to f32.
Doesn't change the default printing for op_sel_hi, just
the parsing.
llvm-svn: 312179
Summary:
All instructions with the DPP modifier may not write to certain lanes of
the output if bound_ctrl=1 is set or any bits in bank_mask or row_mask
aren't set, so the destination register may be both defined and modified.
The right way to handle this is to add a constraint that the destination
register is the same as one of the inputs. We could tie the destination
to the first source, but that would be too restrictive for some use-cases
where we want the destination to be some other value before the
instruction executes. Instead, add a fake "old" source and tie it to the
destination. Effectively, the "old" source defines what value unwritten
lanes will get. We'll expose this functionality to users with a new
intrinsic later.
Also, we want to use DPP instructions for computing derivatives, which
means we need to set WQM for them. We also need to enable the entire
wavefront when using DPP intrinsics to implement nonuniform subgroup
reductions, since otherwise we'll get incorrect results in some cases.
To accomodate this, add a new operand to all DPP instructions which will
be interpreted by the SI WQM pass. This will be exposed with a new
intrinsic later. We'll also add support for Whole Wavefront Mode later.
I also fixed llvm.amdgcn.mov.dpp to overwrite the source and fixed up
the test. However, I could also keep the old behavior (where lanes that
aren't written are undefined) if people want it.
Reviewers: tstellar, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D34716
llvm-svn: 310283
Intrinsic already existed for llvm.SI.tbuffer.store
Needed tbuffer.load and also re-implementing the intrinsic as llvm.amdgcn.tbuffer.*
Added CodeGen tests for the 2 new variants added.
Left the original llvm.SI.tbuffer.store implementation to avoid issues with existing code
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye, tpr
Differential Revision: https://reviews.llvm.org/D30687
llvm-svn: 306031
Summary: Previously there were two separate pseudo instruction for SDWA on VI and on GFX9. Created one pseudo instruction that is union of both of them. Added verifier to check that operands conform either VI or GFX9.
Reviewers: dp, arsenm, vpykhtin
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, artem.tamazov
Differential Revision: https://reviews.llvm.org/D34026
llvm-svn: 305886
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Summary:
Added separate pseudo and real instruction for GFX9 SDWA instructions.
Currently supports only in assembler.
Depends D32493
Reviewers: vpykhtin, artem.tamazov
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D33132
llvm-svn: 303620
Summary of changes:
- corrected vmcnt, expcnt, lgkmcnt helpers to checks their argument for truncation;
- added saturated versions of these helpers.
See bug 32711 for details: https://bugs.llvm.org//show_bug.cgi?id=32711
Reviewers: artem.tamazov, vpykhtin
Differential Revision: https://reviews.llvm.org/D32546
llvm-svn: 301439
Enabled clamp and omod for v_cvt_* opcodes which have src0 of an integer type
Reviewers: vpykhtin, arsenm
Differential Revision: https://reviews.llvm.org/D31327
llvm-svn: 298852
- Rename runtime metadata -> code object metadata
- Make metadata not flow
- Switch enums to use ScalarEnumerationTraits
- Cleanup and move AMDGPUCodeObjectMetadata.h to AMDGPU/MCTargetDesc
- Introduce in-memory representation for attributes
- Code object metadata streamer
- Create metadata for isa and printf during EmitStartOfAsmFile
- Create metadata for kernel during EmitFunctionBodyStart
- Finalize and emit metadata to .note during EmitEndOfAsmFile
- Other minor improvements/bug fixes
Differential Revision: https://reviews.llvm.org/D29948
llvm-svn: 298552
Added code to check constant bus restrictions for VOP formats (only one SGPR value or literal-constant may be used by the instruction).
Note that the same checks are performed by SIInstrInfo::verifyInstruction (used by lowering code).
Added LIT tests.
llvm-svn: 296873
- Verify that runtime metadata is actually valid runtime metadata when assembling, otherwise we could accept the following when assembling, but ocl runtime will reject it:
.amdgpu_runtime_metadata
{ amd.MDVersion: [ 2, 1 ], amd.RandomUnknownKey, amd.IsaInfo: ...
- Make IsaInfo optional, and always emit it.
Differential Revision: https://reviews.llvm.org/D30349
llvm-svn: 296324
Coverage/smoke Gfx7/8 tests were committed r292922 but then reverted
by r292974 due to AddressSanitizer failure, which is fixed by this patch.
Tests to be re-committed soon.
llvm-svn: 293338
Among other stuff, this allows to use predefined .option.machine_version_major
/minor/stepping symbols in the directive.
Relevant test expanded at once (also file renamed for clarity).
Differential Revision: https://reviews.llvm.org/D28140
llvm-svn: 290710
The feature allows for conditional assembly, filling the entries
of .amd_kernel_code_t etc.
Symbols are defined with value 0 at the beginning of each kernel scope.
After each register usage, the respective symbol is set to:
value = max( value, ( register index + 1 ) )
Thus, at the end of scope the value represents a count of used registers.
Kernel scopes begin at .amdgpu_hsa_kernel directive, end at the
next .amdgpu_hsa_kernel (or EOF, whichever comes first). There is also
dummy scope that lies from the beginning of source file til the
first .amdgpu_hsa_kernel.
Test added.
Differential Revision: https://reviews.llvm.org/D27859
llvm-svn: 290608
Summary: This is needed for later SDWA support in CodeGen.
Reviewers: vpykhtin, tstellarAMD
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D27412
llvm-svn: 290338
Summary:
Added pair of directives .hsa_code_object_metadata/.end_hsa_code_object_metadata.
Between them user can put YAML string that would be directly put to the generated note. E.g.:
'''
.hsa_code_object_metadata
{
amd.MDVersion: [ 2, 0 ]
}
.end_hsa_code_object_metadata
'''
Based on D25046
Reviewers: vpykhtin, nhaustov, yaxunl, tstellarAMD
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, mgorny, tony-tye
Differential Revision: https://reviews.llvm.org/D27619
llvm-svn: 290097
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Since 32-bit instructions with 32-bit input immediate behavior
are used to materialize 16-bit constants in 32-bit registers
for 16-bit instructions, determining the legality based
on the size is incorrect. Change operands to have the size
specified in the type.
Also adds a workaround for a disassembler bug that
produces an immediate MCOperand for an operand that
is supposed to be OPERAND_REGISTER.
The assembler appears to accept out of bounds immediates and
truncates them, but this seems to be an issue for 32-bit
already.
llvm-svn: 289306
As it stands, the OperandMatchResultTy is only included in the generated
header if there is custom operand parsing. However, almost all backends
make use of MatchOperand_Success and friends from OperandMatchResultTy for
e.g. parseRegister. This is a pain when starting an AsmParser for a new
backend that doesn't yet have custom operand parsing. Move the enum to
MCTargetAsmParser.h.
This patch is a prerequisite for D23563
Differential Revision: https://reviews.llvm.org/D23496
llvm-svn: 285705
Fixes Bug 30808.
Note that passing subtarget information to predicates seems too complicated, so gfx8-specific def smrd_offset_20 introduced.
Old gfx6/7-specific def renamed to smrd_offset_8 for clarity.
Lit tests updated.
Differential Revision: https://reviews.llvm.org/D26085
llvm-svn: 285590
- Refactor bit packing/unpacking
- Calculate bit mask given bit shift and bit width
- Introduce function for decoding bits of waitcnt
- Introduce function for encoding bits of waitcnt
- Introduce function for getting waitcnt mask (instead of using bare numbers)
- Introduce function fot getting max waitcnt(s) (instead of using bare numbers)
Differential Revision: https://reviews.llvm.org/D25298
llvm-svn: 283919
Summary:
Prevously assembler parsed all literals as either 32-bit integers or 32-bit floating-point values. Because of this we couldn't support f64 literals.
E.g. in instruction "v_fract_f64 v[0:1], 0.5", literal 0.5 was encoded as 32-bit literal 0x3f000000, which is incorrect and will be interpreted as 3.0517578125E-5 instead of 0.5. Correct encoding is inline constant 240 (optimal) or 32-bit literal 0x3FE00000 at least.
With this change the way immediate literals are parsed is changed. All literals are always parsed as 64-bit values either integer or floating-point. Then we convert parsed literals to correct form based on information about type of operand parsed (was literal floating or binary) and type of expected instruction operands (is this f32/64 or b32/64 instruction).
Here are rules how we convert literals:
- We parsed fp literal:
- Instruction expects 64-bit operand:
- If parsed literal is inlinable (e.g. v_fract_f64_e32 v[0:1], 0.5)
- then we do nothing this literal
- Else if literal is not-inlinable but instruction requires to inline it (e.g. this is e64 encoding, v_fract_f64_e64 v[0:1], 1.5)
- report error
- Else literal is not-inlinable but we can encode it as additional 32-bit literal constant
- If instruction expect fp operand type (f64)
- Check if low 32 bits of literal are zeroes (e.g. v_fract_f64 v[0:1], 1.5)
- If so then do nothing
- Else (e.g. v_fract_f64 v[0:1], 3.1415)
- report warning that low 32 bits will be set to zeroes and precision will be lost
- set low 32 bits of literal to zeroes
- Instruction expects integer operand type (e.g. s_mov_b64_e32 s[0:1], 1.5)
- report error as it is unclear how to encode this literal
- Instruction expects 32-bit operand:
- Convert parsed 64 bit fp literal to 32 bit fp. Allow lose of precision but not overflow or underflow
- Is this literal inlinable and are we required to inline literal (e.g. v_trunc_f32_e64 v0, 0.5)
- do nothing
- Else report error
- Do nothing. We can encode any other 32-bit fp literal (e.g. v_trunc_f32 v0, 10000000.0)
- Parsed binary literal:
- Is this literal inlinable (e.g. v_trunc_f32_e32 v0, 35)
- do nothing
- Else, are we required to inline this literal (e.g. v_trunc_f32_e64 v0, 35)
- report error
- Else, literal is not-inlinable and we are not required to inline it
- Are high 32 bit of literal zeroes or same as sign bit (32 bit)
- do nothing (e.g. v_trunc_f32 v0, 0xdeadbeef)
- Else
- report error (e.g. v_trunc_f32 v0, 0x123456789abcdef0)
For this change it is required that we know operand types of instruction (are they f32/64 or b32/64). I added several new register operands (they extend previous register operands) and set operand types to corresponding types:
'''
enum OperandType {
OPERAND_REG_IMM32_INT,
OPERAND_REG_IMM32_FP,
OPERAND_REG_INLINE_C_INT,
OPERAND_REG_INLINE_C_FP,
}
'''
This is not working yet:
- Several tests are failing
- Problems with predicate methods for inline immediates
- LLVM generated assembler parts try to select e64 encoding before e32.
More changes are required for several AsmOperands.
Reviewers: vpykhtin, tstellarAMD
Subscribers: arsenm, kzhuravl, artem.tamazov
Differential Revision: https://reviews.llvm.org/D22922
llvm-svn: 281050
The structs ImmOp and RegOp are in AArch64AsmParser.cpp (inside
anonymous namespace).
This diff changes the order of fields and removes the excessive padding
(8 bytes).
Patch by Alexander Shaposhnikov
llvm-svn: 278844
Summary: dst_sel and dst_unused disabled for VOPC as they have no effect on result
Reviewers: artem.tamazov, tstellarAMD, vpykhtin
Subscribers: arsenm, kzhuravl
Differential Revision: http://reviews.llvm.org/D21376
llvm-svn: 274340