Since crash dumping landed in r268519, May 2016, I have not once seen
anyone use an uploaded minidump to debug a compiler crash. Therefore,
I'm turning this off by default. The dumps clutter up user and buildbot
temp directories. Each file is only about 56KB, but it adds up.
In the context of clang, the extra line about the minidump confuses
users, when what we really want from them is the pre-processed source
code.
llvm-svn: 340185
Summary:
Hello!
This commit adds a LLVM-C target that is always built on MSVC. A big fat warning, this is my first cmake code ever so there is a fair bit of I-have-no-idea-what-I'm-doing going on here. Which is also why I placed it outside of llvm-shlib as I was afraid of breaking things of other people. Secondly llvm-shlib builds a LLVM.so which exports all symbols and then does a thin library that points to it, but on Windows we do not build a LLVM.dll so that would have complicated the code more.
The patch includes a python script that calls dumpbin.exe to get all of the symbols from the built libraries. It then grabs all the symbols starting with LLVM and generates the export file from those. The export file is then used to create the library just like the LLVM-C that is built on darwin.
Improvements that I need help with, to follow up this review.
- Get cmake to make sure that dumpbin.exe is on the path and wire the full path to the script.
- Use LLVM-C.dll when building llvm-c-test so we can verify that the symbols are exported.
- Bundle the LLVM-C.dll with the windows installer.
Why do this? I'm building a language frontend which is self-hosting, and on windows because of various tooling issues we have a problem of consuming the LLVM*.lib directly on windows. Me and the users of my projects using LLVM would be greatly helped by having LLVM-C.dll built and shipped by the Windows installer. Not only does LLVM takes forever to build, you have to run a extra python script in order to get the final DLL.
Any comments, thoughts or help is greatly appreciated.
Cheers, Jakob.
Patch by: Wallbraker (Jakob Bornecrantz)
Reviewers: compnerd, beanz, hans, smeenai
Reviewed By: beanz
Subscribers: xbolva00, bhelyer, Memnarch, rnk, fedor.sergeev, chapuni, smeenai, john.brawn, deadalnix, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D35077
llvm-svn: 339151
Summary:
This option is no longer needed since r300496 added symbol
versioning by default
Reviewers: sylvestre.ledru, beanz, mgorny
Reviewed By: mgorny
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49835
llvm-svn: 338751
This new JIT event listener supports generating profiling data for
the linux 'perf' profiling tool, allowing it to generate function and
instruction level profiles.
Currently this functionality is not enabled by default, but must be
enabled with LLVM_USE_PERF=yes. Given that the listener has no
dependencies, it might be sensible to enable by default once the
initial issues have been shaken out.
I followed existing precedent in registering the listener by default
in lli. Should there be a decision to enable this by default on linux,
that should probably be changed.
Please note that until https://reviews.llvm.org/D47343 is resolved,
using this functionality with mcjit rather than orcjit will not
reliably work.
Disregarding the previous comment, here's an example:
$ cat /tmp/expensive_loop.c
bool stupid_isprime(uint64_t num)
{
if (num == 2)
return true;
if (num < 1 || num % 2 == 0)
return false;
for(uint64_t i = 3; i < num / 2; i+= 2) {
if (num % i == 0)
return false;
}
return true;
}
int main(int argc, char **argv)
{
int numprimes = 0;
for (uint64_t num = argc; num < 100000; num++)
{
if (stupid_isprime(num))
numprimes++;
}
return numprimes;
}
$ clang -ggdb -S -c -emit-llvm /tmp/expensive_loop.c -o
/tmp/expensive_loop.ll
$ perf record -o perf.data -g -k 1 ./bin/lli -jit-kind=mcjit /tmp/expensive_loop.ll 1
$ perf inject --jit -i perf.data -o perf.jit.data
$ perf report -i perf.jit.data
- 92.59% lli jitted-5881-2.so [.] stupid_isprime
stupid_isprime
main
llvm::MCJIT::runFunction
llvm::ExecutionEngine::runFunctionAsMain
main
__libc_start_main
0x4bf6258d4c544155
+ 0.85% lli ld-2.27.so [.] do_lookup_x
And line-level annotations also work:
│ for(uint64_t i = 3; i < num / 2; i+= 2) {
│1 30: movq $0x3,-0x18(%rbp)
0.03 │1 38: mov -0x18(%rbp),%rax
0.03 │ mov -0x10(%rbp),%rcx
│ shr $0x1,%rcx
3.63 │ ┌──cmp %rcx,%rax
│ ├──jae 6f
│ │ if (num % i == 0)
0.03 │ │ mov -0x10(%rbp),%rax
│ │ xor %edx,%edx
89.00 │ │ divq -0x18(%rbp)
│ │ cmp $0x0,%rdx
0.22 │ │↓ jne 5f
│ │ return false;
│ │ movb $0x0,-0x1(%rbp)
│ │↓ jmp 73
│ │ }
3.22 │1 5f:│↓ jmp 61
│ │ for(uint64_t i = 3; i < num / 2; i+= 2) {
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D44892
llvm-svn: 337789
This is a new modernized VS integration installer. It adds a
Visual Studio .sln file which, when built, outputs a VSIX that can
be used to install ourselves as a "real" Visual Studio Extension.
We can even upload this extension to the visual studio marketplace.
This fixes a longstanding problem where we didn't support installing
into VS 2017 and higher. In addition to supporting VS 2017, due
to the way this is written we now longer need to do anything special
to support future versions of VS as well. Everything should
"just work". This also fixes several bugs with our old integration,
such as MSBuild triggering full rebuilds when /Zi was used.
Finally, we add a new UI page called "LLVM" which becomes visible
when the LLVM toolchain is selected. For now this only contains
one option which is the path to clang-cl.exe, but in the future
we can add more things here.
Differential Revision: https://reviews.llvm.org/D42762
llvm-svn: 337572
Automatically codesign all executables and dynamic libraries if a
codesigning identity is given (via LLVM_CODESIGNING_IDENTITY). This
option is darwin only for now.
Also update platforms/iOS.cmake to pick up the right versions of
codesign and codesign_allocate.
llvm-svn: 336708
This change adds a support for multiarch style runtimes layout, so in
addition to the existing layout where runtimes get installed to:
lib/clang/$version/lib/$os
Clang now allows runtimes to be installed to:
lib/clang/$version/$target/lib
This also includes libc++, libc++abi and libunwind; today those are
assumed to be in Clang library directory built for host, with the
new layout it is possible to install libc++, libc++abi and libunwind
into the runtime directory built for different targets.
The use of new layout is enabled by setting the
LLVM_ENABLE_RUNTIME_TARGET_DIR CMake variable and is supported by both
projects and runtimes layouts. The runtimes CMake build has been further
modified to use the new layout when building runtimes for multiple
targets.
Differential Revision: https://reviews.llvm.org/D45604
llvm-svn: 335809
This reverts commit r334543.
My understanding is, that commit is intended to make the llvm-build
invocation have a correct "--enable-optional-components" value, but:
- it already has a value: it's quoted in the command line a few lines
below, and, if I hack llvm-build to print sys.argv, it does look correct:
-- llvm-build output: ['.../utils/llvm-build/llvm-build',
'--native-target', 'X86', '--enable-targets', 'X86;ARM;AArch64',
'--enable-optional-components', '',
'--write-library-table',
'.../build/tools/llvm-config/LibraryDependencies.inc',
'--write-cmake-fragment', '.../build/LLVMBuild.cmake']
- the " " string seems to evaluate to TRUE in CMake (*sigh*), so this
basically force-enables LLVM_USE_INTEL_JITEVENTS, regardless of the
value of the option.
On Darwin, JITEvents is not supported, so this bypasses that OS check
but is guaranteed to fail later.
llvm-svn: 334566
Patch by Force.Charlie-I
If LLVM_USE_INTEL_JITEVENTS and LLVM_USE_OPROFILE not set,
"${LLVMOPTIONALCOMPONENTS}" is empty, but
**--enable-optional-components** need arg, Cause
**--write-library-table** to be skipped parsed.
Differential Revision: https://reviews.llvm.org/D47982
llvm-svn: 334543
This dependency was accidentally dropped in r319480, causing
install-distribution and install-llvm-headers to install an incomplete
set of headers (the generated Intrinsics and Attributes would be
missing).
llvm-svn: 334452
Summary:
This patch adds a new internal variable
LLVM_RUNTIME_DISTRIBUTION_COMPONENTS which specifies distribution
components that are part of runtime projects, and thus should be exposed
from runtime configuraitons up into the top-level CMake configurations.
This is required for allowing runtime components to be included in
LLVM_DISTRIBUTION_COMPONENTS because we verify that the build and
install targets exist for every component specified for the
distribution.
Without this patch runtimes and builtins can only be included in
distributions in whole, not by component.
Reviewers: phosek
Reviewed By: phosek
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D46705
llvm-svn: 332631
This behavior has been the default for a long time, so the default value is On, however this can make it difficult to debug sanitizer failures, so we should have an option to turn it off.
llvm-svn: 332628
It used to symlink dsymutil to llvm-dsymutil, but after r327790 llvm's dsymutil
binary is now called dsymutil without prefix.
r327792 then reversed the direction of the symlink if
LLVM_INSTALL_CCTOOLS_SYMLINKS was set, but that looks like a buildfix and not
like something anyone should need.
https://reviews.llvm.org/D45966
llvm-svn: 330727
These should exist in all toolchains LLVM supports nowadays.
Enables making DataTypes.h a regular header instead of a .h.cmake file and
allows deleting a bunch of cmake goop (which should also speed up cmake
configure time a bit).
All the code this removes is 9+ years old.
https://reviews.llvm.org/D45155
llvm-svn: 328970
Compiler.h is used by Demangle (which Support depends on) - so sink it
into Demangle to avoid a circular dependency
DataTypes.h is used by llvm-c (which Support depends on) - so sink it
into llvm-c.
DataTypes.h could probably be fixed the other way - making llvm-c depend
on Support instead of Support depending on llvm-c - if anyone feels
that's the better option, happy to work with them on that.
I /think/ this'll address the layering issues that previous attempts to
commit this have triggered in the Modules buildbot, but I haven't been
able to reproduce that build so can't say for sure. If anyone's having
trouble with this - it might be worth taking a look to see if there's a
quick fix/something small I missed rather than revert, but no worries.
llvm-svn: 328123
Support depends on llvm-c (a few typedefs, macros, etc - Types.h,
Disassembler.h, and TargetMachine.h.
This could be done the other way - those macros/typedefs/etc could be
moved into Support and used from llvm-c instead. If someone feels that's
a better direction to go, happy to discuss it/try it out/etc.
llvm-svn: 328065
Add a `LLVM_INSTALL_CCTOOLS_SYMLINKS` to mirror
`LLVM_INSTALL_BINUTILS_SYMLINKS`. For now, this allows us to create
symlinks for `dsymutil` to `llvm-dsymutil`. This option is off by
default, but the user can enable it.
llvm-svn: 326381
It looks like this hasn't been updated since bugzilla moved.
Patch by Colden Cullen.
Differential Revision: https://reviews.llvm.org/D42496
llvm-svn: 323457
Set cmake policy CMP0068=NEW, if available, and set
"CMAKE_BUILD_WITH_INSTALL_NAME_DIR=On" globally to
maintain current behavior.
This is needed to suppress warnings on OSX starting with cmake version
3.9.6.
Differential Revision: https://reviews.llvm.org/D42463
llvm-svn: 323404
Summary:
Update this error message indicate this test only ensures experimental
targets were passed via LLVM_EXPERIMENTAL_TARGETS_TO_BUILD.
Originally, this test validated all targets, but in r184923, it was moved
after the LLVMBUILDTOOL test, which also validates all targets, making
that part of the test redundant.
Differential Revision: https://reviews.llvm.org/D41273
llvm-svn: 321012
Newer versions of CMake (I'm on 3.10, but I believe 3.9 behaves the same
way) attempt to query the system for information about the VS 2017
install. Unfortunately, this query fails on non-Windows systems:
cmake_host_system_information does not recognize <key> VS_15_DIR
CMake isn't going to find these system libraries on non-Windows anyway
(and we were previously silencing the resultant warnings in our
cross-compilation toolchain), so it makes sense to just omit the
attempted installation entirely on non-Windows.
Differential Revision: https://reviews.llvm.org/D41220
llvm-svn: 320724
This is identical to the install-distribution target, except that it
strips the installed binaries.
Differential Revision: https://reviews.llvm.org/D40689
llvm-svn: 320184
Summary: Make LLVM_ENABLE_DUMP independent LLVM_ENABLE_ASSERTIONS,
move it to llvm-config.h, and update description.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 320111
CMake's generated installation scripts support `CMAKE_INSTALL_DO_STRIP`
to enable stripping the installed binaries. LLVM's build system doesn't
expose this option to the `install-` targets, but it's useful in
conjunction with `install-distribution`.
Add a new function to create the install targets, which creates both the
regular install target and a second install target that strips during
installation. Change the creation of all installation targets to use
this new function. Stripping doesn't make a whole lot of sense for some
installation targets (e.g. the LLVM headers), but consistency doesn't
hurt.
I'll make other repositories (e.g. clang, compiler-rt) use this in a
follow-up, and then add an `install-distribution-stripped` target to
actually accomplish the end goal of creating a stripped distribution. I
don't want to do that step yet because the creation of that target would
depend on the presence of the `install-*-stripped` target for each
distribution component, and the distribution components from other
repositories will be missing that target right now.
Differential Revision: https://reviews.llvm.org/D40620
llvm-svn: 319480
This is still breaking greendragon.
At this point I give up until someone can fix the greendragon
bots, and I will probably abandon this effort in favor of using
a private github repository.
llvm-svn: 318722
This was reverted due to the tests being run twice on some
build bots. Each run had a slightly different configuration
due to the way in which it was being invoked. This fixes
the problem (albeit in a somewhat hacky way). Hopefully in
the future we can get rid of the workflow of running
debuginfo-tests as part of clang, and then this hack can
go away.
llvm-svn: 318697
This is still broken because it causes certain tests to be
run twice with slightly different configurations, which is
wrong in some cases.
You can observe this by running:
ninja -nv check-all | grep debuginfo-tests
And seeing that it passes clang/test and clang/test/debuginfo-tests
to lit, which causes it to run debuginfo-tests twice. The fix is
going to involve either:
a) figuring out that we're running in this "deprecated" configuration,
and then deleting the clang/test/debuginfo-tests path, which should
cause it to behave identically to before, or:
b) make lit smart enough that it doesn't descend into a sub-suite if
that sub-suite already has a lit.cfg file.
llvm-svn: 318486
This was reverted due to some failures on specific darwin buildbots,
the issue being that the new lit configuration was not setting the
SDKROOT environment variable. We've tested a fix locally and confirmed
that it works, so this patch resubmits everything with the fix
applied.
llvm-svn: 318435
Summary:
This patch adds a LLVM_ENABLE_GISEL_COV which, like LLVM_ENABLE_DAGISEL_COV,
causes TableGen to instrument the generated table to collect rule coverage
information. However, LLVM_ENABLE_GISEL_COV goes a bit further than
LLVM_ENABLE_DAGISEL_COV. The information is written to files
(${CMAKE_BINARY_DIR}/gisel-coverage-* by default). These files can then be
concatenated into ${LLVM_GISEL_COV_PREFIX}-all after which TableGen will
read this information and use it to emit warnings about untested rules.
This technique could also be used by SelectionDAG and can be further
extended to detect hot rules and give them priority over colder rules.
Usage:
* Enable LLVM_ENABLE_GISEL_COV in CMake
* Build the compiler and run some tests
* cat gisel-coverage-[0-9]* > gisel-coverage-all
* Delete lib/Target/*/*GenGlobalISel.inc*
* Build the compiler
Known issues:
* ${LLVM_GISEL_COV_PREFIX}-all must be generated as a manual
step due to a lack of a portable 'cat' command. It should be the
concatenation of all ${LLVM_GISEL_COV_PREFIX}-[0-9]* files.
* There's no mechanism to discard coverage information when the ruleset
changes
Depends on D39742
Reviewers: ab, qcolombet, t.p.northover, aditya_nandakumar, rovka
Reviewed By: rovka
Subscribers: vsk, arsenm, nhaehnle, mgorny, kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39747
llvm-svn: 318356
In addition to the current ON and OFF options, this adds the FORCE_ON
option, which causes a configuration error if libxml2 cannot be used.
Differential revision: https://reviews.llvm.org/D40050
llvm-svn: 318209
This reverts the aforementioned patch and 2 subsequent follow-ups,
as some buildbots are still failing 2 tests because of it.
Investigation is ongoing into the cause of the failures.
llvm-svn: 318112
Previously, debuginfo-tests was expected to be checked out into
clang/test and then the tests would automatically run as part of
check-clang. This is not a standard workflow for handling
external projects, and it brings with it some serious drawbacks
such as the inability to depend on things other than clang, which
we will need going forward.
The goal of this patch is to migrate towards a more standard
workflow. To ease the transition for build bot maintainers,
this patch tries not to break the existing workflow, but instead
simply deprecate it to give maintainers a chance to update
the build infrastructure.
Differential Revision: https://reviews.llvm.org/D39605
llvm-svn: 317925
The LLVM tools can be used as a replacement for binutils, in which case
it's convenient to create symlinks with the binutils names. Add support
for these symlinks in the build system. As with any other llvm tool
symlinks, the user can limit the installed symlinks by only adding the
desired ones to `LLVM_TOOLCHAIN_TOOLS`.
Differential Revision: https://reviews.llvm.org/D39530
llvm-svn: 317272