This isn't the final fix for our reduction/horizontal codegen, but it takes care
of a lot of the problems. After we narrow the shuffle, existing combines for
insert/extract and binops kick in, and we end up with cheaper 128-bit ops.
The avg and mul reduction tests show an existing shuffle lowering hole for
AVX2/AVX512. I think in its most minimal form this is:
https://bugs.llvm.org/show_bug.cgi?id=40434
...but we might need multiple fixes to get it right.
Differential Revision: https://reviews.llvm.org/D57156
llvm-svn: 352209
Add tests that arguments for enabling/disabling
sb and predres are correctly being or not passed
by the driver.
Differential Revision: https://reviews.llvm.org/D57060
llvm-svn: 352203
This target-independent code won't trigger for cases such as RV32FD where
custom SelectionDAG nodes are generated. These new tests demonstrate such
cases. Additionally, float-arith.ll was updated so that fneg.s, fsgnjn.s, and
fabs.s selection patterns are actually exercised.
llvm-svn: 352199
If a stack trace or similar has a list of addresses from an executable
or DSO loaded at a variable address (e.g. due to ASLR), the addresses
will not directly correspond to the addresses stored in the object file.
If a user wishes to use llvm-symbolizer, they have to subtract the load
address from every address. This is somewhat inconvenient, especially as
the output of --print-address will result in the adjusted address being
listed, rather than the address coming from the stack trace, making it
harder to map results between the two.
This change adds a new switch to llvm-symbolizer --adjust-vma which
takes an offset, which is then used to automatically do this
calculation. The printed address remains the input address (allowing for
easy mapping), whilst the specified offset is applied to the addresses
when performing the lookup.
The switch is conceptually similar to llvm-objdump's new switch of the
same name (see D57051), which in turn mirrors a GNU switch. There is no
equivalent switch in addr2line.
Reviewed by: grimar
Differential Revision: https://reviews.llvm.org/D57151
llvm-svn: 352195
Same as ARM.
On this occasion we split some of the instruction select tests for more
complicated instructions into their own files, so we can reuse them for
ARM and Thumb mode. Likewise for the legalizer tests.
llvm-svn: 352188
This patch extends TableGen language with !cond operator.
Instead of embedding !if inside !if which can get cumbersome,
one can now use !cond.
Below is an example to convert an integer 'x' into a string:
!cond(!lt(x,0) : "Negative",
!eq(x,0) : "Zero",
!eq(x,1) : "One,
1 : "MoreThanOne")
Reviewed By: hfinkel, simon_tatham, greened
Differential Revision: https://reviews.llvm.org/D55758
llvm-svn: 352185
This change adds an option -g to llvm-objcopy which is an alias for the existing option --strip-debug.
This fixes PR40003.
Reviewed by: alexshap
Differential Revision: https://reviews.llvm.org/D57217
llvm-svn: 352182
Relocatable code generation is meaningless on MSP430, as the platform is too small to use shared libraries.
Patch by Dmitry Mikushev!
Differential Revision: https://reviews.llvm.org/D56927
llvm-svn: 352181
Match the coverage of test\CodeGen\X86\avx512-shuffle-schedule.ll so we can get rid of -print-schedule (and fix PR37160) without losing schedule tests
llvm-svn: 352179
Summary:
The field `m_decompression_scratch_type` is only used when `HAVE_LIBCOMPRESSION` is
defined, which caused a warning which I fixed in rLLDB350675 by just marking the variable as always used.
This patch fixes this in a better way by only defining the variable (and the related `m_decompression_scratch`
variable) when `HAVE_LIBCOMPRESSION` is defined. This also required changing the way we handle
`HAVE_LIBCOMPRESSION` works, as this was previously always defined on macOS within the source file
but not in the header. Now it's always defined from within our config header when CMake defines it or when
we are on macOS.
The field initialization was moved to the header to prevent that we have `#ifdef` within our initializer list.
Reviewers: #lldb, jasonmolenda, sgraenitz, labath
Reviewed By: labath
Subscribers: labath, beanz, mgorny, lldb-commits, dblaikie
Differential Revision: https://reviews.llvm.org/D57011
llvm-svn: 352175
Fast selection of llvm icmp and fcmp instructions is not handled well about VSX instruction support.
We'd use VSX float comparison instruction instead of non-vsx float comparison instruction
if the operand register class is VSSRC or VSFRC because i32 and i64 are mapped to VSSRC and
VSFRC correspondingly if VSX feature is opened.
If the target does not have corresponding VSX instruction comparison for some type,
just copy VSX-related register to common float register class and use non-vsx comparison instruction.
Differential Revision: https://reviews.llvm.org/D57078
llvm-svn: 352174
Follow the same custom legalisation strategy as used in D57085 for
variable-length shifts (see that patch summary for more discussion). Although
we may lose out on some late-stage DAG combines, I think this custom
legalisation strategy is ultimately easier to reason about.
There are some codegen changes in rv64m-exhaustive-w-insts.ll but they are all
neutral in terms of the number of instructions.
Differential Revision: https://reviews.llvm.org/D57096
llvm-svn: 352171
2nd part of D57095 with the same reason, just in another place. We never
fold branches that are not immediately in the current loop, but this check
is missing in `IsEdgeLive` As result, it may think that the edge in subloop is
dead while it's live. It's a pessimization in the current stance.
Differential Revision: https://reviews.llvm.org/D57147
Reviewed By: rupprecht
llvm-svn: 352170
The previous DAG combiner-based approach had an issue with infinite loops
between the target-dependent and target-independent combiner logic (see
PR40333). Although this was worked around in rL351806, the combiner-based
approach is still potentially brittle and can fail to select the 32-bit shift
variant when profitable to do so, as demonstrated in the pr40333.ll test case.
This patch instead introduces target-specific SelectionDAG nodes for
SHLW/SRLW/SRAW and custom-lowers variable i32 shifts to them. pr40333.ll is a
good example of how this approach can improve codegen.
This adds DAG combine that does SimplifyDemandedBits on the operands (only
lower 32-bits of first operand and lower 5 bits of second operand are read).
This seems better than implementing SimplifyDemandedBitsForTargetNode as there
is no guarantee that would be called (and it's not for e.g. the anyext return
test cases). Also implements ComputeNumSignBitsForTargetNode.
There are codegen changes in atomic-rmw.ll and atomic-cmpxchg.ll but the new
instruction sequences are semantically equivalent.
Differential Revision: https://reviews.llvm.org/D57085
llvm-svn: 352169
While a cold invoke itself and its unwind destination can't be
extracted, code which unconditionally executes before/after the invoke
may still be profitable to extract.
With cost model changes from D57125 applied, this gives a 3.5% increase
in split text across LNT+externals on arm64 at -Os.
llvm-svn: 352160
when the binary loaded in memory has a section that we cannot find
in the on-disk version. I added this warning out of an overabundance
of caution originally, but I've never seen an instance of it being
hit in the past few years, and there are some changes for the shared
cache on darwin systems where a segment is added when the shared
cache is constructed so we're now hitting this warning. I've decided
to remove it altogether.
<rdar://problem/46889346>
llvm-svn: 352158
ACLE specifies that return type for rsr and rsr64 is uint32_t and
uint64_t respectively. D56852 change the return type of rsr64 from
unsigned long to unsigned long long which at least on Linux doesn't
match uint64_t, but the test isn't strict enough to detect that
because compiler implicitly converts unsigned long long to uint64_t,
but it breaks other uses such as printf with PRIx64 type specifier.
This change makes the test stricter enforcing that the return type
of rsr and rsr64 builtins is what is actually specified in ACLE.
Differential Revision: https://reviews.llvm.org/D57210
llvm-svn: 352156