This is the more natural lowering, and presents more opportunities to
reduce 64-bit ops to 32-bit.
This should also help avoid issues graphics shaders have had with
64-bit values, and simplify argument lowering in globalisel.
llvm-svn: 366578
Before 2018, mesa used to use byval interchangably with inreg, which
didn't really make sense. Fix tests still using it to avoid breaking
in a future commit.
llvm-svn: 365953
This switches to the workaround that HSA defaults to
for the mesa path.
This should be applied to the 4.0 branch.
Patch by Vedran Miletić <vedran@miletic.net>
llvm-svn: 292982
Summary:
This change adds some verification in the IR verifier around struct path
TBAA metadata.
Other than some basic sanity checks (e.g. we get constant integers where
we expect constant integers), this checks:
- That by the time an struct access tuple `(base-type, offset)` is
"reduced" to a scalar base type, the offset is `0`. For instance, in
C++ you can't start from, say `("struct-a", 16)`, and end up with
`("int", 4)` -- by the time the base type is `"int"`, the offset
better be zero. In particular, a variant of this invariant is needed
for `llvm::getMostGenericTBAA` to be correct.
- That there are no cycles in a struct path.
- That struct type nodes have their offsets listed in an ascending
order.
- That when generating the struct access path, you eventually reach the
access type listed in the tbaa tag node.
Reviewers: dexonsmith, chandlerc, reames, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26438
llvm-svn: 289402
This makes it possible to distinguish between mesa shaders
and other kernels even in the presence of compute shaders.
Patch By: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Differential Revision: http://reviews.llvm.org/D18559
llvm-svn: 265589
noduplicate prevents unrolling of small loops that happen to have
barriers in them. If a loop has a barrier in it, it is OK to duplicate
it for the unroll.
llvm-svn: 256075
We can wait on either VM, EXP or LGKM.
The waits are independent.
Without this patch, a wait inserted because of one of them
would also wait for all the previous others.
This patch makes s_wait only wait for the ones we need for the next
instruction.
Here's an example of subtle perf reduction this patch solves:
This is without the patch:
buffer_load_format_xyzw v[8:11], v0, s[44:47], 0 idxen
buffer_load_format_xyzw v[12:15], v0, s[48:51], 0 idxen
s_load_dwordx4 s[44:47], s[8:9], 0xc
s_waitcnt lgkmcnt(0)
buffer_load_format_xyzw v[16:19], v0, s[52:55], 0 idxen
s_load_dwordx4 s[48:51], s[8:9], 0x10
s_waitcnt vmcnt(1)
buffer_load_format_xyzw v[20:23], v0, s[44:47], 0 idxen
The s_waitcnt vmcnt(1) is useless.
The reason it is added is because the last
buffer_load_format_xyzw needs s[44:47], which was issued
by the first s_load_dwordx4. It waits for all VM
before that call to have finished.
Internally after every instruction, 3 counters (for VM, EXP and LGTM)
are updated after every instruction. For example buffer_load_format_xyzw
will
increase the VM counter, and s_load_dwordx4 the LGKM one.
Without the patch, for every defined register,
the current 3 counters are stored, and are used to know
how long to wait when an instruction needs the register.
Because of that, the s[44:47] counter includes that to use the register
you need to wait for the previous buffer_load_format_xyzw.
Instead this patch stores only the counters that matter for the
register,
and puts zero for the other ones, since we don't need any wait for them.
Patch by: Axel Davy
Differential Revision: http://reviews.llvm.org/D11883
llvm-svn: 245755