This does the same as `--mcpu=help` but was only
documented in the user guide.
* Added a test for both options.
* Corrected the single dash in `-mcpu=help` text.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D92305
This patch starts emitting the `EShNum` key, when the `e_shnum = 0`
and the section header table exists.
`e_shnum` might be 0, when the the number of entries in the section header
table is larger than or equal to SHN_LORESERVE (0xff00).
In this case the real number of entries
in the section header table is held in the `sh_size`
member of the initial entry in section header table.
Currently, obj2yaml crashes when an object has `e_shoff != 0` and the `sh_size`
member of the initial entry in section header table is `0`.
This patch fixes it.
Differential revision: https://reviews.llvm.org/D92098
The following line asserts when `sh_addralign > MAX_UINT32 && (uint32_t)sh_addralign == 0`:
```
ExpectedOffset = alignTo(ExpectedOffset,
SecHdr.sh_addralign ? SecHdr.sh_addralign : 1);
```
it happens because `sh_addralign` is truncated to 32-bit value, but `alignTo`
doesn't accept `Align == 0`. We should change `1` to `1uLL`.
Differential revision: https://reviews.llvm.org/D92163
This is related to MIPS. Currently we might report an error and exit,
though there is no problem to report a warning and try to continue dumping
an object. The code uses `MipsGOTParser<ELFT> Parser`, which is isolated
in this method.
Differential revision: https://reviews.llvm.org/D92090
In text-item contexts, %expr expands to a string containing the results of evaluating `expr`.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89736
This starts using `reportUniqueWarnings` instead of `reportError`
in the code that is responsible for dumping notes.
Differential revision: https://reviews.llvm.org/D92021
`notes_begin()` is used for iterating over notes. This API in some cases might print
section type and index. At the same time during iterating, the `Elf_Note_Iterator`
might omit it as it doesn't have this info.
Because of above we might have the redundant duplication of information in warnings:
(See D92021).
```
warning: '[[FILE]]': unable to read notes from the SHT_NOTE section with index 1: SHT_NOTE section [index 1] has invalid offset (0x40) or size (0xffff0000)
```
This change stops reporting section index/type in Object/ELF.h/notes_begin().
(FTR, this was introduced by me for llvm-readobj in D64470).
Instead we can describe sections/program headers on the caller side.
Differential revision: https://reviews.llvm.org/D92081
Currently we never dump the `sh_offset` key.
Though it sometimes an important information.
To reduce the noise this patch implements the following logic:
1) The "Offset" key for the first section is always emitted.
2) If we can derive the offset for a next section naturally,
then the "Offset" key is omitted.
By "naturally" I mean that section[X] offset is expected to be:
```
offsetOf(section[X]) == alignTo(section[X - 1].sh_offset + section[X - 1].sh_size, section[X].sh_addralign)
```
So, when it has the expected value, we omit it from the output.
Differential revision: https://reviews.llvm.org/D91152
This:
1) Changes its signature.
2) Refines the name of local variable (`SymTabName`->`LinkedSecName`,
because SHT_GNU_verneed/SHT_GNU_verdef are linked with the string table, not with the symbol table).
3) Stops using the `unwrapOrError` inside.
Differential revision: https://reviews.llvm.org/D91964
This stops using `RelocationRef` API in the `printStackSize` method
and starts using the "regular" API that is used in almost all other places
in ELFDumper.cpp.
This is not only makes the code to be more consistent, but helps to diagnose
issues better, because the `ELFObjectFile` API, which is used
currently to implement stack sized dumping sometimes has a behavior
that just doesn't work well for broken inputs.
E.g see how it gets the `symbol_end` iterator. It will just not work
well for a case when the `sh_size` is broken.
```
template <class ELFT>
basic_symbol_iterator ELFObjectFile<ELFT>::symbol_end() const {
...
DataRefImpl Sym = toDRI(SymTab, SymTab->sh_size / sizeof(Elf_Sym));
return basic_symbol_iterator(SymbolRef(Sym, this));
}
```
Differential revision: https://reviews.llvm.org/D91624
Patch fixes scheduling of ALU instructions which modify pc register. Patch
also fixes computation of mutually exclusive predicates for sequences of
variants to be properly expanded
Differential revision: https://reviews.llvm.org/D91266
D91867 introduced the `tryGetSectionName` helper.
But we have `getPrintableSectionName` member with the similar
behavior which we can reuse. This patch does it.
Differential revision: https://reviews.llvm.org/D91954
llvm-symbolizer used to use the DIA SDK for symbolization on
Windows; this patch switches to using native symbolization, which was
implemented recently.
Users can still make the symbolizer use DIA by adding the `-dia` flag
in the LLVM_SYMBOLIZER_OPTS environment variable.
Differential Revision: https://reviews.llvm.org/D91814
Accept macro function definitions, and apply them when invoked in operand position.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89734
This test contains YAMLs that can be merged with use of macros.
This opens road for adding more test cases.
Differential revision: https://reviews.llvm.org/D91953
It is possible to trigger a crash/misbehavior when the st_name field of
the signature symbol goes past the end of the string table.
This patch fixes it.
Differential revision: https://reviews.llvm.org/D91943
It is possible to trigger reading past the EOF by breaking fields like
DT_PLTRELSZ, DT_RELSZ or DT_RELASZ
This patch adds a validation in `DynRegionInfo` helper class.
Differential revision: https://reviews.llvm.org/D91787
This stack of changes introduces `llvm-profgen` utility which generates a profile data file from given perf script data files for sample-based PGO. It’s part of(not only) the CSSPGO work. Specifically to support context-sensitive with/without pseudo probe profile, it implements a series of functionalities including perf trace parsing, instruction symbolization, LBR stack/call frame stack unwinding, pseudo probe decoding, etc. Also high throughput is achieved by multiple levels of sample aggregation and compatible format with one stop is generated at the end. Please refer to: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s for the CSSPGO RFC.
This change adds the support of instruction symbolization. Given the RVA on an instruction pointer, a full calling context can be printed side-by-side with the disassembly code.
E.g.
```
Disassembly of section .text [0x0, 0x4a]:
<funcA>:
0: mov eax, edi funcA:0
2: mov ecx, dword ptr [rip] funcLeaf:2 @ funcA:1
8: lea edx, [rcx + 3] fib:2 @ funcLeaf:2 @ funcA:1
b: cmp ecx, 3 fib:2 @ funcLeaf:2 @ funcA:1
e: cmovl edx, ecx fib:2 @ funcLeaf:2 @ funcA:1
11: sub eax, edx funcLeaf:2 @ funcA:1
13: ret funcA:2
14: nop word ptr cs:[rax + rax]
1e: nop
<funcLeaf>:
20: mov eax, edi funcLeaf:1
22: mov ecx, dword ptr [rip] funcLeaf:2
28: lea edx, [rcx + 3] fib:2 @ funcLeaf:2
2b: cmp ecx, 3 fib:2 @ funcLeaf:2
2e: cmovl edx, ecx fib:2 @ funcLeaf:2
31: sub eax, edx funcLeaf:2
33: ret funcLeaf:3
34: nop word ptr cs:[rax + rax]
3e: nop
<fib>:
40: lea eax, [rdi + 3] fib:2
43: cmp edi, 3 fib:2
46: cmovl eax, edi fib:2
49: ret fib:8
```
Test Plan:
ninja check-llvm
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D89715
This stack of changes introduces `llvm-profgen` utility which generates a profile data file from given perf script data files for sample-based PGO. It’s part of(not only) the CSSPGO work. Specifically to support context-sensitive with/without pseudo probe profile, it implements a series of functionalities including perf trace parsing, instruction symbolization, LBR stack/call frame stack unwinding, pseudo probe decoding, etc. Also high throughput is achieved by multiple levels of sample aggregation and compatible format with one stop is generated at the end. Please refer to: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s for the CSSPGO RFC.
This change enables disassembling the text sections to build various address maps that are potentially used by the virtual unwinder. A switch `--show-disassembly` is being added to print the disassembly code.
Like the llvm-objdump tool, this change leverages existing LLVM components to parse and disassemble ELF binary files. So far X86 is supported.
Test Plan:
ninja check-llvm
Reviewed By: wmi, wenlei
Differential Revision: https://reviews.llvm.org/D89712
This stack of changes introduces `llvm-profgen` utility which generates a profile data file from given perf script data files for sample-based PGO. It’s part of(not only) the CSSPGO work. Specifically to support context-sensitive with/without pseudo probe profile, it implements a series of functionalities including perf trace parsing, instruction symbolization, LBR stack/call frame stack unwinding, pseudo probe decoding, etc. Also high throughput is achieved by multiple levels of sample aggregation and compatible format with one stop is generated at the end. Please refer to: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s for the CSSPGO RFC.
As a starter, this change sets up an entry point by introducing PerfReader to load profiled binaries and perf traces(including perf events and perf samples). For the event, here it parses the mmap2 events from perf script to build the loader snaps, which is used to retrieve the image load address in the subsequent perf tracing parsing.
As described in llvm-profgen.rst, the tool being built aims to support multiple input perf data (preprocessed by perf script) as well as multiple input binary images. It should also support dynamic reload/unload shared objects by leveraging the loader snaps being built by this change
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D89707
Our code that dumps groups has 3 noticeable issues:
1) It uses `unwrapOrError` in many places.
2) It doesn't allow reporting unique warnings, because the `getGroups` helper is not
a member of `DumpStyle<ELFT>`.
3) It might just crash. See the comment for `StrTableOrErr->data() + Sym.st_name` line.
In this patch I am starting addressing these points.
For start I've converted one of `unwrapOrError` calls to a unique warning.
Differential revision: https://reviews.llvm.org/D91798
In the current state, if getFromHash(0) is called and there's no CU with
dwo_id=0, the lookup will stop at an empty slot, then the check
`Rows[H].getSignature() != S` won't cause the lookup to fail and return
a nullptr (as it should), because the empty slot has a 0 in the
signature field, and a pointer to the empty slot will be incorrectly
returned.
This patch fixes this by using the index field in the hash entry to
check for empty slots: signature = 0 can match a valid hash but
according to the spec the index for an occupied slot will always be
non-zero.
Differential Revision: https://reviews.llvm.org/D91670
When we produce an YAML output, we also print leading zeroes currently.
An output might look like this:
```
- Name: .dynsym
Type: SHT_DYNSYM
Address: 0x0000000000001000
EntSize: 0x0000000000000018
```
There are probably no reason to print leading zeroes.
It just makes harder to read values. This patch stops printing them.
The output becomes like:
```
- Name: .dynsym
Type: SHT_DYNSYM
Address: 0x1000
EntSize: 0x18
```
This affects obj2yaml mostly, but also dsymutil and llvm-xray tools output.
Differential revision: https://reviews.llvm.org/D90930
This patch adds the SchedMachineModel for Cortex-M7. It
also adds test cases for the scheduling information.
Details of the pipeline and descriptions are in comments
in file ARMScheduleM7.td included in this patch.
Differential Revision: https://reviews.llvm.org/D91355
Removes AArch64 target checking inside 32bit ARM test to bring back
buildbots to a green state. But $ are not well handled for ARM and it
still need to be fixed.
Alternative to D74755. sectionWithinSegment() treats an empty section as having
a size of 1. Due to the rule, an empty .tdata will not be attributed to an
empty PT_TLS. (The empty p_align=64 PT_TLS is for Android Bionic's TCB
compatibility (ELF-TLS). See https://reviews.llvm.org/D62055#1507426)
Currently --only-keep-debug will not layout a segment with no section
(layoutSegmentsForOnlyKeepDebug()), thus p_offset of PT_TLS can go past the end
of the file. The strange p_offset can trigger validation errors for subsequent
tools, e.g. llvm-objcopy errors when reading back the separate debug file
(readProgramHeaders()).
This patch places such an empty segment according to its parent segment. This
special cases works for the empty PT_TLS used in Android. For a non-empty
segment, it should have at least one non-empty section and will be handled by
the normal code. Note, p_memsz PT_LOAD is rejected by both Linux and FreeBSD.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D90897
Support MASM's REPEAT, FOR, FORC, and WHILE macro-like directives.
Also adds support for macro argument substitution inside quoted strings, and additional testing for macro directives.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89732
Imagine we have a YAML declaration of few sections: `foo1`, `<unnamed 2>`, `foo3`, `foo4`.
To put them into segment we can do (1*):
```
Sections:
- Section: foo1
- Section: foo4
```
or we can use (2*):
```
Sections:
- Section: foo1
- Section: foo3
- Section: foo4
```
or (3*) :
```
Sections:
- Section: foo1
## "(index 2)" here is a name that we automatically created for a unnamed section.
- Section: (index 2)
- Section: foo3
- Section: foo4
```
It looks really confusing that we don't have to list all of sections.
At first I've tried to make this rule stricter and report an error when there is a gap
(i.e. when a section is included into segment, but not listed explicitly).
This did not work perfect, because such approach conflicts with unnamed sections/fills (see (3*)).
This patch drops "Sections" key and introduces 2 keys instead: `FirstSec` and `LastSec`.
Both are optional.
Differential revision: https://reviews.llvm.org/D90458
This is recommit for D90903 with fixes for BB:
1) Used std::move<> when returning Expected<> (http://lab.llvm.org:8011/#/builders/112/builds/913)
2) Fixed the name of temporarily file in the file-headers.test (http://lab.llvm.org:8011/#/builders/36/builds/1269)
(a local old temporarily file was used before)
For creating `ELFObjectFile` instances we have the factory method
`ELFObjectFile<ELFT>::create(MemoryBufferRef Object)`.
The problem of this method is that it scans the section header to locate some sections.
When a file is truncated or has broken fields in the ELF header, this approach does
not allow us to create the `ELFObjectFile` and dump the ELF header.
This is https://bugs.llvm.org/show_bug.cgi?id=40804
This patch suggests a solution - it allows to delay scaning sections in the
`ELFObjectFile<ELFT>::create`. It now allows user code to call an object
initialization (`initContent()`) later. With that it is possible,
for example, for dumpers just to dump the file header and exit.
By default initialization is still performed as before, what helps to keep
the logic of existent callers untouched.
I've experimented with different approaches when worked on this patch.
I think this approach is better than doing initialization of sections (i.e. scan of them)
on demand, because normally users of `ELFObjectFile` API expect to work with a valid object.
In most cases when a section header table can't be read (because of an error), we don't
have to continue to work with object. So we probably don't need to implement a more complex API.
Differential revision: https://reviews.llvm.org/D90903
For creating `ELFObjectFile` instances we have the factory method
`ELFObjectFile<ELFT>::create(MemoryBufferRef Object)`.
The problem of this method is that it scans the section header to locate some sections.
When a file is truncated or has broken fields in the ELF header, this approach does
not allow us to create the `ELFObjectFile` and dump the ELF header.
This is https://bugs.llvm.org/show_bug.cgi?id=40804
This patch suggests a solution - it allows to delay scaning sections in the
`ELFObjectFile<ELFT>::create`. It now allows user code to call an object
initialization (`initContent()`) later. With that it is possible,
for example, for dumpers just to dump the file header and exit.
By default initialization is still performed as before, what helps to keep
the logic of existent callers untouched.
I've experimented with different approaches when worked on this patch.
I think this approach is better than doing initialization of sections (i.e. scan of them)
on demand, because normally users of `ELFObjectFile` API expect to work with a valid object.
In most cases when a section header table can't be read (because of an error), we don't
have to continue to work with object. So we probably don't need to implement a more complex API.
Differential revision: https://reviews.llvm.org/D90903
This diff fixes missing fields initialization (Size, VMSize).
Previously this resulted in broken binaries when multiple sections
were added in one tool's invocatation.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D90690
MASM interprets strings in expression contexts as integers expressed in big-endian base-256, treating each character as its ASCII representation.
This completely eliminates the need to special-case single-character strings.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D90788
Some binaries can contain regular sections with zero offset and zero size.
This diff makes llvm-objcopy's handling of such sections consistent with
cctools's strip (which doesn't modify them),
previously the tool would allocate file space for them.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D90796
YAML support allows us to better test the feature in the subsequent patches. The implementation is quite similar to the .stack_sizes section.
Reviewed By: jhenderson, grimar
Differential Revision: https://reviews.llvm.org/D88717
Allow single-quoted strings and double-quoted character values, as well as doubled-quote escaping.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89731
This matches behavior GNU objcopy and can simplify clang-offload-bundler
(which currently works around the issue by invoking llvm-objcopy twice).
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D90438
Allows the MACRO directive to define macro procedures with parameters and macro-local symbols.
Supports required and optional parameters (including default values), and matches ml64.exe for its macro-local symbol handling (up to 65536 macro-local symbols in any translation unit).
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89729
This differentiates the Ryzen 4000/4300/4500/4700 series APUs that were
previously included in gfx909.
Differential Revision: https://reviews.llvm.org/D90419
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
Currently it is impossible to create an instance of ELFObjectFile when the
SHT_SYMTAB_SHNDX can't be read. We error out when fail to parse the
SHT_SYMTAB_SHNDX section in the factory method.
This change delays reading of the SHT_SYMTAB_SHNDX section entries,
with it llvm-readobj is now able to work with such inputs.
Differential revision: https://reviews.llvm.org/D89379
Patch fixes case when sched class has write and read variants belonging
to different processor models.
Differential revision: https://reviews.llvm.org/D89777
These sections are implicit and handled a bit differently.
Currently the "Offset" is ignored for them.
This patch fixes an issue.
Differential revision: https://reviews.llvm.org/D90446
Only the aliases 'xzr' and 'sp' exist for the physical register x31.
The reason for wanting to remove the alias 'x31' is because it allows users
to write invalid asm that is not accepted by the GNU assembler.
Is there any objection to removing this alias? Or do we want to keep
this for compatibility with existing code that uses w31/x31?
Differential Revision: https://reviews.llvm.org/D90153
This is likely to be a regressigion introduced by my last refactoring of the
LSUnit (commit 5578ec32f9). Before this patch, the
"CurrentStoreBarrierGroupID" index was not correctly reset on store barrier
executions. This was leading to unexpected crashes like the one reported as
PR48024.
This is to enable `--allow-unused-duplicates=false`. These prefixes
appear to be outdated and intentionally unused.
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D90423
`Link` is not an optional field currently.
Because of this it is not convenient to write macros.
This makes it optional and fixes corresponding test cases.
Differential revision: https://reviews.llvm.org/D90390
Recognize the __apple_ sections as debug info sections and make sure
they're included in the --show-sections-sizes output.
Differential revision: https://reviews.llvm.org/D90433
This is to enable --allow-unused-duplicates=false. This prefix appears
to be outdated and intentionally unused.
Reviewed By: rupprecht
Differential Revision: https://reviews.llvm.org/D90427
This diff adds support for LLVM bitcode objects to llvm-libtool-darwin.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D88722
There is a possible scenario when we crash when dumping dynamic relocations.
For that we should have no section headers (to take the number of synamic symbols from)
and a dynamic relocation that refers to a symbol with an index that is too large to be in a file.
The patch fixes it.
Differential revision: https://reviews.llvm.org/D90214
Doing a random assignment assigns both tested (forward) and back-to-back
(backward) instructions.
When none of the tested instruction and back-to-back instruction have
implicit aliasing, we're currently trying to do a random register
asignment twice.
Fix this (see PR26418).
Differential Revision: https://reviews.llvm.org/D90380
This creates `strtab-implicit-sections.yaml` and merges 2 `strtab-implicit-sections*` tests into it.
I've also added a few tests for `.shstrtab` section related to section flags.
With that we have a single place where we can test implicit string table sections and
the `.shstrtab` section in particular.
Differential revision: https://reviews.llvm.org/D90372
This simplifies the dynsymtab-shlink.yaml test (with use of macros)
and merges it into the dynsym-section.yaml test.
Differential revision: https://reviews.llvm.org/D90301
When `NoHeaders` is set, we still have following issues:
1) We emit the `.shstrtab` implicit section of size 1 (empty string table).
2) We still align the start of the section header table, what affects the output size.
3) We still write section header table bytes.
This patch fixes all of these issues.
Differential revision: https://reviews.llvm.org/D90295
This removes Inputs/libbogus11.a
Initially I've removed it in D90013, but had to restore it, because BB found this
test is using it.
I've updated the test to use YAMLs, added comment and one more possible error check.
Differential revision: https://reviews.llvm.org/D90312
This diff refactors error reporting to make it more clear
what arguments were passed to llvm-install-name-tool.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D90080
In rG6d656c9691d4 I had to relax the check from
`CONTENT: 21 3c 61 72 63 68 3e 0a 12{{$}}`
to
`CONTENT: 21 3c 61 72 63 68 3e 0a 12`
to fix the FreeBSD bot quickly: http://lab.llvm.org:8011/#/builders/28/builds/547
It turns out that "od" prints a trailing white space on FreeBSD, that is
why EOL mark ({{$}}) can't be used. But we still want to check the output size.
This patch adds a check of output size with "wc -c", similar to how it is done
below in the same test. This restores the original strictness.
Currently the test uses 14 precompiled binaries. With the functionality
implemented in D89949, it is possible to remove them and use YAMLs instead.
Differential revision: https://reviews.llvm.org/D90013
This teaches obj2yaml to dump valid regular (not thin) archives.
This also teaches yaml2obj to recognize archives YAML descriptions,
what allows to craft all different kinds of archives (valid and broken ones).
Differential revision: https://reviews.llvm.org/D89949
Our "implicit" sections are handled separately from regular ones.
It turns out that the "Offset" key is not handled properly for them.
Perhaps we can generalize handling in one place, but before doing that I'd like
to add support and test cases for each implicit section.
(I need this particular single change to unblock another patch that is already on review,
and I guess doing it independently for each section will be cleaner, see below).
In this patch I've removed `explicit-dynsym-no-dynstr.yaml` to `dynsym-section.yaml`
and added the new test into. In a follow-up we probably might want
to merge 2 another existent `dynsymtab-*.yaml` tests into it too.
Differential revision: https://reviews.llvm.org/D90224
--section-details/-t is a GNU readelf option that produce
an output that is an alternative to --sections.
Differential revision: https://reviews.llvm.org/D89304
Imagine the following declaration of a section:
```
Sections:
- Name: .dynsym
Type: SHT_DYNSYM
AddressAlign: 0x1111111111111111
```
The aligment is large and yaml2obj reports an error currently:
"the desired output size is greater than permitted. Use the --max-size option to change the limit"
This patch implements the "ShAddrAlign" key, which is similar to other "Sh*" keys we have.
With it it is possible to override the `sh_addralign` field, ignoring the writing of alignment bytes.
Differential revision: https://reviews.llvm.org/D90019