We currently miss a number of opportunities to emit single-instruction
VMRG[LH][BHW] instructions for shuffles on little endian subtargets. Although
this in itself is not a huge performance opportunity since loading the permute
vector for a VPERM can always be pulled out of loops, producing such merge
instructions is useful to downstream optimizations.
Since VPERM is essentially opaque to all subsequent optimizations, we want to
avoid it as much as possible. Other permute instructions have semantics that can
be reasoned about much more easily in later optimizations.
This patch does the following:
- Canonicalize shuffles so that the first element comes from the first vector
(since that's what most of the mask matching functions want)
- Switch the elements that come from splat vectors so that they match the
corresponding elements from the other vector (to allow for merges)
- Adds debugging messages for when a shuffle is matched to a VPERM so that
anyone interested in improving this further can get the info for their code
Differential revision: https://reviews.llvm.org/D77448
Summary:
When doing the conversion: MachineInst -> MCInst, we should ignore the
implicit operands, it will expose more opportunity for InstiAlias.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D77118
Revert r316478.
A test case has failed.
Will recommit this change once we find and fix the failure.
This reverts commit 7c330fabaedaba3d02c58bc3cc1198896c895f34.
llvm-svn: 316952
If we have the situation where a Swap feeds a Splat we can sometimes change the
index on the Splat and then remove the Swap instruction.
Fixed the test case that was failing and recommit after pulling the original
commit.
Original revision is here: https://reviews.llvm.org/D39009
llvm-svn: 316478
This patch enables redundant sign- and zero-extension elimination in PowerPC MI Peephole pass.
If the input value of a sign- or zero-extension is known to be already sign- or zero-extended, the operation is redundant and can be eliminated.
One common case is sign-extensions for a method parameter or for a method return value; they must be sign- or zero-extended as defined in PPC ELF ABI.
For example of the following simple code, two extsw instructions are generated before the invocation of int_func and before the return. With this patch, both extsw are eliminated.
void int_func(int);
void ii_test(int a) {
if (a & 1) return int_func(a);
}
Such redundant sign- or zero-extensions are quite common in many programs; e.g. I observed about 60,000 occurrences of the elimination while compiling the LLVM+CLANG.
Differential Revision: https://reviews.llvm.org/D31319
llvm-svn: 315888
mfvrd and mffprd are both alias to mfvrsd.
This patch enables correct parsing of the aliases, but we still emit a mfvrsd.
Committing on behalf of brunoalr (Bruno Rosa).
Differential Revision: https://reviews.llvm.org/D29177
llvm-svn: 297849
This patch corresponds to review:
https://reviews.llvm.org/D25912
This is the first patch in a series of 4 that improve the lowering and combining
for BUILD_VECTOR nodes on PowerPC.
llvm-svn: 288152
This patch corresponds to review:
https://reviews.llvm.org/D23155
This patch removes the VSHRC register class (based on D20310) and adds
exploitation of the Power9 sub-word integer loads into VSX registers as well
as vector sign extensions.
The new instructions are useful for a few purposes:
Int to Fp conversions of 1 or 2-byte values loaded from memory
Building vectors of 1 or 2-byte integers with values loaded from memory
Storing individual 1 or 2-byte elements from integer vectors
This patch implements all of those uses.
llvm-svn: 283190
This patch corresponds to review:
http://reviews.llvm.org/D21358
Vector shifts that have the same semantics as a vector swap are cannonicalized
as such to provide additional opportunities for swap removal optimization to
remove unnecessary swaps.
llvm-svn: 275168
This patch corresponds to review:
http://reviews.llvm.org/D15286
LLVM IR frequently contains bitcast operations between floating point and
integer values of the same width. Doing this through memory operations is
quite expensive on PPC. This patch allows the use of direct register moves
between FPRs and GPRs for lowering bitcasts.
llvm-svn: 255246
This patch adds a pass for doing PowerPC peephole optimizations at the
MI level while the code is still in SSA form. This allows for easy
modifications to the instructions while depending on a subsequent pass
of DCE. Both passes are very fast due to the characteristics of SSA.
At this time, the only peepholes added are for cleaning up various
redundancies involving the XXPERMDI instruction. However, I would
expect this will be a useful place to add more peepholes for
inefficiencies generated during instruction selection. The pass is
placed after VSX swap optimization, as it is best to let that pass
remove unnecessary swaps before performing any remaining clean-ups.
The utility of these clean-ups are demonstrated by changes to four
existing test cases, all of which now have tighter expected code
generation. I've also added Eric Schweiz's bugpoint-reduced test from
PR25157, for which we now generate tight code. One other test started
failing for me, and I've fixed it
(test/Transforms/PlaceSafepoints/finite-loops.ll) as well; this is not
related to my changes, and I'm not sure why it works before and not
after. The problem is that the CHECK-NOT: of "statepoint" from test1
fails because of the "statepoint" in test2, and so forth. Adding a
CHECK-LABEL in between keeps the different occurrences of that string
properly scoped.
llvm-svn: 252651
This revision has introduced an issue that only affects bootstrapped compiler
when it is printing the ASM. It turns out that the new code path taken due to
legalizing a scalar_to_vector of i64 -> v2i64 exposes a missing check in a
micro optimization to change a load followed by a scalar_to_vector into a
load and splat instruction on PPC.
llvm-svn: 251798
This patch corresponds to review:
http://reviews.llvm.org/D12032
This patch builds onto the patch that provided scalar to vector conversions
without stack operations (D11471).
Included in this patch:
- Vector element extraction for all vector types with constant element number
- Vector element extraction for v16i8 and v8i16 with variable element number
- Removal of some unnecessary COPY_TO_REGCLASS operations that ended up
unnecessarily moving things around between registers
Not included in this patch (will be in upcoming patch):
- Vector element extraction for v4i32, v4f32, v2i64 and v2f64 with
variable element number
- Vector element insertion for variable/constant element number
Testing is provided for all extractions. The extractions that are not
implemented yet are just placeholders.
llvm-svn: 249822
This revision has introduced an issue that only affects bootstrapped compiler
when it is printing the ASM. I am working on resolving the issue, but in the
meantime, I'm disabling the legalization of scalar_to_vector operation for v2i64
and the associated testing until I can get this fixed.
llvm-svn: 245481
This patch corresponds to review:
http://reviews.llvm.org/D11471
It improves the code generated for converting a scalar to a vector value. With
direct moves from GPRs to VSRs, we no longer require expensive stack operations
for this. Subsequent patches will handle the reverse case and more general
operations between vectors and their scalar elements.
llvm-svn: 244921