I originally requested this to be tested in D25263 but in the end
forgot to make sure that it was done.
Differential Revision: https://reviews.llvm.org/D28289
llvm-svn: 291389
It passes --sysroot for the Linux CUDA installation. To make this test
pass when targetting Windows, you would need to pass
--sysroot=Inputs/CUDA-windows.
llvm-svn: 291255
Summary:
For the most part this is straightforward: Just add a CudaInstallation
object to the MSVC and MinGW toolchains.
CudaToolChain has to override computeMSVCVersion so that
Clang::constructJob passes the right version flag to cc1. We have to
modify IsWindowsMSVC and friends in Clang::constructJob to be true when
compiling CUDA device code on Windows for the same reason.
Depends on: D28319
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D28320
llvm-svn: 291131
Summary:
Authored by Senthil Kumar Selvaraj
This patch adds barebones support in Clang for the (experimental) AVR target. It uses the integrated assembler for assembly, and the GNU linker for linking, as lld doesn't know about the target yet.
The DataLayout string is the same as the one in AVRTargetMachine.cpp. The alignment specs look wrong to me, as it's an 8 bit target and all types only need 8 bit alignment. Clang failed with a datalayout mismatch error when I tried to change it, so I left it that way for now.
Reviewers: rsmith, dylanmckay, cfe-commits, rengolin
Subscribers: rengolin, jroelofs, wdng
Differential Revision: https://reviews.llvm.org/D27123
llvm-svn: 291082
Summary:
This change adds support for the -fno-delayed-template-parsing option in
clang-cl.exe. This allows developers using clang-cl.exe to opt out of
emulation of MSVC's non-conformant template instantiation implementation
while continuing to use clang-cl.exe for its emulation of cl.exe
command-line options. The default behavior of clang-cl.exe
(-fdelayed-template-parsing) is unchanged.
The MSVC Standard Library implementation uses clang-cl.exe with this
switch in its tests to ensure that the library headers work on compilers
with the conformant two-phase-lookup behavior.
Reviewers: majnemer, cfe-commits, DaveBartolomeo
Differential Revision: https://reviews.llvm.org/D22275
llvm-svn: 290990
in non-void functions that fall off at the end without returning a value when
compiling C++.
Clang uses the new compiler flag to determine when it should treat control flow
paths that fall off the end of a non-void function as unreachable. If
-fno-strict-return is on, the code generator emits the ureachable and trap
IR only when the function returns either a record type with a non-trivial
destructor or another non-trivially copyable type.
The primary goal of this flag is to avoid treating falling off the end of a
non-void function as undefined behaviour. The burden of undefined behaviour
is placed on the caller instead: if the caller ignores the returned value then
the undefined behaviour is avoided. This kind of behaviour is useful in
several cases, e.g. when compiling C code in C++ mode.
rdar://13102603
Differential Revision: https://reviews.llvm.org/D27163
llvm-svn: 290960
Windows uses PE/COFF which is inherently position independent. The use
of the PIC model is unnecessary. In fact, we would generate invalid
code using the ELF PIC model when PIC was enabled previously. Now that
we no longer accept -fPIC and -fpoc, this switches the internal
representation to the static model to permit us to make PIC modules
invalid when targeting Windows. This should not change the code
generation, only the internal state management.
llvm-svn: 290569
Use of these flags would result in the use of ELF-style PIE/PIC code
which is incorrect on Windows. Windows is inherently PIC by means of
the DLL slide that occurs at load. This also mirrors the behaviour on
GCC for MinGW. Currently, the Windows x86_64 forces the relocation
model to PIC (Level 2). This is unchanged for now, though we should
remove any assumptions on that and change it to a static relocation
model.
llvm-svn: 290533
manager, and a code path to use it.
The option is actually a top-level option but does contain
'experimental' in the name. This is the compromise suggested by Richard
in discussions. We expect this option will be around long enough and
have enough users towards the end that it merits not being relegated to
CC1, but it still needs to be clear that this option will go away at
some point.
The backend code is a fresh codepath dedicated to handling the flow with
the new pass manager. This was also Richard's suggested code structuring
to essentially leave a clean path for development rather than carrying
complexity or idiosyncracies of how we do things just to share code with
the parts of this in common with the legacy pass manager. And it turns
out, not much is really in common even though we use the legacy pass
manager for codegen at this point.
I've switched a couple of tests to run with the new pass manager, and
they appear to work. There are still plenty of bugs that need squashing
(just with basic experiments I've found two already!) but they aren't in
this code, and the whole point is to expose the necessary hooks to start
experimenting with the pass manager in more realistic scenarios.
That said, I want to *strongly caution* anyone itching to play with
this: it is still *very shaky*. Several large components have not yet
been shaken down. For example I have bugs in both the always inliner and
inliner that I have already spotted and will be fixing independently.
Still, this is a fun milestone. =D
One thing not in this patch (but that might be very reasonable to add)
is some level of support for raw textual pass pipelines such as what
Sean had a patch for some time ago. I'm mostly interested in the more
traditional flow of getting the IR out of Clang and then running it
through opt, but I can see other use cases so someone may want to add
it.
And of course, *many* features are not yet supported!
- O1 is currently more like O2
- None of the sanitizers are wired up
- ObjC ARC optimizer isn't wired up
- ...
So plenty of stuff still lef to do!
Differential Revision: https://reviews.llvm.org/D28077
llvm-svn: 290450
-fno-inline-functions, -O0, and optnone.
These were really, really tangled together:
- We used the noinline LLVM attribute for -fno-inline
- But not for -fno-inline-functions (breaking LTO)
- But we did use it for -finline-hint-functions (yay, LTO is happy!)
- But we didn't for -O0 (LTO is sad yet again...)
- We had weird structuring of CodeGenOpts with both an inlining
enumeration and a boolean. They interacted in weird ways and
needlessly.
- A *lot* of set smashing went on with setting these, and then got worse
when we considered optnone and other inlining-effecting attributes.
- A bunch of inline affecting attributes were managed in a completely
different place from -fno-inline.
- Even with -fno-inline we failed to put the LLVM noinline attribute
onto many generated function definitions because they didn't show up
as AST-level functions.
- If you passed -O0 but -finline-functions we would run the normal
inliner pass in LLVM despite it being in the O0 pipeline, which really
doesn't make much sense.
- Lastly, we used things like '-fno-inline' to manipulate the pass
pipeline which forced the pass pipeline to be much more
parameterizable than it really needs to be. Instead we can *just* use
the optimization level to select a pipeline and control the rest via
attributes.
Sadly, this causes a bunch of churn in tests because we don't run the
optimizer in the tests and check the contents of attribute sets. It
would be awesome if attribute sets were a bit more FileCheck friendly,
but oh well.
I think this is a significant improvement and should remove the semantic
need to change what inliner pass we run in order to comply with the
requested inlining semantics by relying completely on attributes. It
also cleans up tho optnone and related handling a bit.
One unfortunate aspect of this is that for generating alwaysinline
routines like those in OpenMP we end up removing noinline and then
adding alwaysinline. I tried a bunch of other approaches, but because we
recompute function attributes from scratch and don't have a declaration
here I couldn't find anything substantially cleaner than this.
Differential Revision: https://reviews.llvm.org/D28053
llvm-svn: 290398
Much to my surprise, '-disable-llvm-optzns' which I thought was the
magical flag I wanted to get at the raw LLVM IR coming out of Clang
deosn't do that. It still runs some passes over the IR. I don't want
that, I really want the *raw* IR coming out of Clang and I strongly
suspect everyone else using it is in the same camp.
There is actually a flag that does what I want that I didn't know about
called '-disable-llvm-passes'. I suspect many others don't know about it
either. It both does what I want and is much simpler.
This removes the confusing version and makes that spelling of the flag
an alias for '-disable-llvm-passes'. I've also moved everything in Clang
to use the 'passes' spelling as it seems both more accurate (*all* LLVM
passes are disabled, not just optimizations) and much easier to remember
and spell correctly.
This is part of simplifying how Clang drives LLVM to make it cleaner to
wire up to the new pass manager.
Differential Revision: https://reviews.llvm.org/D28047
llvm-svn: 290392
gtest is a widely-used unit-testing API. It provides macros for unit test
assertions:
ASSERT_TRUE(p != nullptr);
that expand into an if statement that constructs an object representing
the result of the assertion and returns when the assertion is false:
if (AssertionResult gtest_ar_ = AssertionResult(p == nullptr))
;
else
return ...;
Unfortunately, the analyzer does not model the effect of the constructor
precisely because (1) the copy constructor implementation is missing from the
the header (so it can't be inlined) and (2) the boolean-argument constructor
is constructed into a temporary (so the analyzer decides not to inline it since
it doesn't reliably call temporary destructors right now).
This results in false positives because the analyzer does not realize that the
the assertion must hold along the non-return path.
This commit addresses the false positives by explicitly modeling the effects
of the two un-inlined constructors on the AssertionResult state.
I've added a new package, "apiModeling", for these kinds of checkers that
model APIs but don't emit any diagnostics. I envision all the checkers in
this package always being on by default.
This addresses the false positives reported in PR30936.
Differential Revision: https://reviews.llvm.org/D27773
rdar://problem/22705813
llvm-svn: 290143
Summary:
This lets you build with one CUDA installation but use ptxas from
another install.
This is useful e.g. if you want to avoid bugs in an old ptxas without
actually upgrading wholesale to a newer CUDA version.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D27788
llvm-svn: 289847
Summary:
This implements execute-only support for ARM code generation, which
prevents the compiler from generating data accesses to code sections.
The following changes are involved:
* Add the CodeGen option "-arm-execute-only" to the ARM code generator.
* Add the clang flag "-mexecute-only" as well as the GCC-compatible
alias "-mpure-code" to enable this option.
* When enabled, literal pools are replaced with MOVW/MOVT instructions,
with VMOV used in addition for floating-point literals. As the MOVT
instruction is required, execute-only support is only available in
Thumb mode for targets supporting ARMv8-M baseline or Thumb2.
* Jump tables are placed in data sections when in execute-only mode.
* The execute-only text section is assigned section ID 0, and is
marked as unreadable with the SHF_ARM_PURECODE flag with symbol 'y'.
This also overrides selection of ELF sections for globals.
Reviewers: t.p.northover, rengolin
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D27450
llvm-svn: 289786
Most of the PowerPC64 code generation already creates PIC access. This
changes to a full PIC default, similar to what GCC is doing.
Overall, a monolithic clang binary shrinks by 600KB (about 1%). This can
be a slight regression for TLS access and will use the TOC more
aggressively instead of synthesizing immediates. It is expected to be
performance neutral.
Differential Revision: https://reviews.llvm.org/D26564
llvm-svn: 289744
The driver passes flags to cc1 that enable various checkers based on
the target triple. This commit adds tests for these flags on Darwin, Linux,
and Windows.
This is a test-only change.
llvm-svn: 289685
Fix the gcc-config code to support multilib gcc installs properly. This
solves two problems: -mx32 using the 64-bit gcc directory (due to matching
installation triple), and -m32 not respecting gcc-config at all (due to
mismatched installation triple).
In order to fix the former issue, split the multilib scan out of
Generic_GCC::GCCInstallationDetector::ScanLibDirForGCCTriple() (the code
is otherwise unchanged), and call it for each installation found via
gcc-config.
In order to fix the latter issue, split the gcc-config processing out of
Generic_GCC::GCCInstallationDetector::init() and repeat it for all
triples, including extra and biarch triples. The only change
in the gcc-config code itself is adding the call to multilib scan.
Convert the gentoo_linux_gcc_multi_version_tree test input to multilib
x86_64+32+x32 install, and add appropriate tests to linux-header-search
and linux-ld.
Differential Revision: https://reviews.llvm.org/D26887
llvm-svn: 289436
This allows us to negate preceding --cuda-gpu-arch=X.
This comes handy when user needs to override default
flags set for them by the build system.
Differential Revision: https://reviews.llvm.org/D27631
llvm-svn: 289287
Summary:
On actual Windows hosts :-) , this could report something other than the
fallback, with a non-zero minor/build number.
Reviewers: rnk, llvm-commits
Differential Revision: https://reviews.llvm.org/D27554
llvm-svn: 289011
Currently -fstack-protector is on by default when using -ffreestanding.
Change the default behavior to have it off when using -ffreestanding.
rdar://problem/14089363
llvm-svn: 289005
Summary:
This change adds more test cases for the default MSVC compatibility version:
1. When -fms-extensions is supplied, but -fmsc-version and
-fms-compatibility-version are not.
2. With the target triple specifies an MSVC environment, but no other
-fms* flags.
Reviewers: rnk, llvm-commits
Subscribers: hans, compnerd, amccarth
Differential Revision: https://reviews.llvm.org/D27498
llvm-svn: 288997
Summary:
Write output from compilation database test to %T rather than the working dir.
Sometimes CWD isn't writable!
Also specify no-canonical-prefixes so that clang has 'clang' in the name.
Reviewers: bkramer
Subscribers: joerg, cfe-commits
Differential Revision: https://reviews.llvm.org/D27504
llvm-svn: 288892
As a first step toward removing Objective-C garbage collection from
Clang, remove support from the driver. I'm hoping this will flush out
any expected bots/configurations/whatever that might rely on it.
I've left the options behind temporarily in -cc1 to keep tests passing.
I'll kill them off entirely in a follow up when I've had a chance to
update/delete the rest of Clang.
llvm-svn: 288872
"-mlinker-version=264.3.102" automatically. Wiring down a target on the
other hand is problematic as this actually needs to run codegen and
doesn't work with -###.
llvm-svn: 288827
When integrating compilation database output into existing build
systems, two approaches dominate so far. Ad-hoc implementation of the
JSON output rules or using compiler wrappers. This patch adds a new
option "-MJ foo.json" which gives a slightly cleaned up compilation
record. The output is a fragment, i.e. you still need to add the array
markers, but it allows multiple files to be easy merged.
This way the only change in a build system is adding the option with
potentially a per-target output file and merging the files with
something like
(echo '['; cat *.o.json; echo ']' > compilation_database.json
or some additional filtering to remove the trailing comma for strict
JSON compliance.
Differential Revision: https://reviews.llvm.org/D27140
llvm-svn: 288821
This is to match the behavior of non-LTO;
when -fsave-optimization-record is passed and PGO is available we enable
the generation of hotness information in the optimization records.
Differential Revision: https://reviews.llvm.org/D27332
llvm-svn: 288520
Summary:
The test introduced by rL288448 is currently failing because
unimportant but unexpected errors appear as output from a test compile
line. This patch looks for a more specific error message, in order to
avoid false positives.
Reviewers: jlebar
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D27328
Switch to more specific error
llvm-svn: 288453
This fixes a bug that was introduced in rL287285. The bug made it
illegal to pass -fsanitize=address during CUDA compilation because the
CudaToolChain class was switched from deriving from the Linux toolchain
class to deriving directly from the ToolChain toolchain class. When
CudaToolChain derived from Linux, it used Linux's getSupportedSanitizers
method, and that method allowed ASAN, but when it switched to deriving
directly from ToolChain, it inherited a getSupportedSanitizers method
that didn't allow for ASAN.
This patch fixes that bug by creating a getSupportedSanitizers method
for CudaToolChain that supports ASAN.
This patch also fixes the test that checks that -fsanitize=address is
passed correctly for CUDA builds. That test didn't used to notice if an
error message was emitted, and that's why it didn't catch this bug when
it was first introduced. With the fix from this patch, that test will
now catch any similar bug in the future.
llvm-svn: 288448
Summary: This patch adds a check and an error message to gnutools::Linker::ConstructJob in case the architecture is not supported. For most other operating systems, the error message is created in lib/Basic/Targets.cpp:AllocateTarget, but when construction the linker arguments for the gnutools linker a supported architecture is required.
Reviewers: rafael, joerg, echristo
Subscribers: mehdi_amini, joerg, dschuff, cfe-commits
Differential Revision: https://reviews.llvm.org/D27066
llvm-svn: 288327
Summary: Makes -fprofile-instr-generate and -fprofile-instr-use work
with clang-cl so that profile-guided optimization can be used.
Differential Revision: https://reviews.llvm.org/D27086
llvm-svn: 288230
https://reviews.llvm.org/D25932 made it so that clang always checks if
libLTO.dylib is present on disk, even if -flto is not being used. The
motivation for that change was that if a dependency happens to contain bitcode,
ld64 will try to load libLTO without -flto explicitly being enabled. However,
the change had the undesirable side effect of warning if libLTO.dylib doesn't
exist even if it isn't needed.
Change things so that -lto_library is always passes, independent of if it
exists or not. ld64 only looks at this flag if it uses LTO. If the dylib
exists, all is well. If it doesn't, and LTO is not being used, all is well too.
If ld64 does end up using LTO and the dylib does not exist, ld64 will print
something like
ld: could not process llvm bitcode object file, because foo/libLTO.dylib could not be loaded file 'test.o' for architecture x86_64
https://reviews.llvm.org/D26984
llvm-svn: 287685