LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
and use it to keep from doing the OS Plugin UpdateThreadList while destroying, since
if that does anything that requires the API lock it may deadlock against whoever is
running the Process::Destroy.
<rdar://problem/13308627>
llvm-svn: 176375
to have it not named appropriately. Also in StopInfoMachException, we aren't testing for software or not software, just
whether the thing is a breakpoint we set. So don't use "software"...
llvm-svn: 175241
When launching in the shell, make sure if you specify a relative path, and if the current working directory has a space in it, that we don't hose the shell invocation.
Currently if we launch with a relative path, we prepend the current working directory to the PATH using:
PATH=`cwd`:$PATH a.out ...
We needed to add quotes around the value for PATH to make sure if any paths in PATH contained spaces, that we don't hose the shell command. Now we do a:
PATH="`cwd`:$PATH" a.out ...
llvm-svn: 175135
hitting auto-continue signals while running a thread plan would cause us to lose control of the debug
session.
<rdar://problem/12993641>
llvm-svn: 174793
Fix in loading mach files from memory when using DynamicLoaderMacOSXDYLD.
Removed the uuid mismatch warning that could be spit out and any time during debugging and removed the test case that was looking for that. Currently the "add-dsym" or "target symbols add" command will report an error when the UUID's don't match.
Be more careful when checking and resolving section + offset addresses to make sure none of the base addresses are invalid.
llvm-svn: 174222
Add the ability to give breakpoints a "kind" string, and have the StopInfoBreakpoint
print that in the brief description if set. Also print the kind - if set - in the breakpoint
listing.
Give kinds to a bunch of the internal breakpoints.
We were deleting the Mac OS X dynamic loader breakpoint as though the id we had stored away was
a breakpoint site ID, but in fact it was a breakpoint id, so we never actually deleted it. Fixed that.
llvm-svn: 173555
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Added the ability for OS plug-ins to lazily populate the thread this. The python OS plug-in classes can now implement the following method:
class OperatingSystemPlugin:
def create_thread(self, tid, context):
# Return a dictionary for a new thread to create it on demand
This will add a new thread to the thread list if it doesn't already exist. The example code in lldb/examples/python/operating_system.py has been updated to show how this call us used.
Cleaned up the code in PythonDataObjects.cpp/h:
- renamed all classes that started with PythonData* to be Python*.
- renamed PythonArray to PythonList. Cleaned up the code to use inheritance where
- Centralized the code that does ref counting in the PythonObject class to a single function.
- Made the "bool PythonObject::Reset(PyObject *)" function be virtual so each subclass can correctly check to ensure a PyObject is of the right type before adopting the object.
- Cleaned up all APIs and added new constructors for the Python* classes to they can all construct form:
- PyObject *
- const PythonObject &
- const lldb::ScriptInterpreterObjectSP &
Cleaned up code in ScriptInterpreterPython:
- Made calling python functions safer by templatizing the production of value formats. Python specifies the value formats based on built in C types (long, long long, etc), and code often uses typedefs for uint32_t, uint64_t, etc when passing arguments down to python. We will now always produce correct value formats as the templatized code will "do the right thing" all the time.
- Fixed issues with the ScriptInterpreterPython::Locker where entering the session and leaving the session had a bunch of issues that could cause the "lldb" module globals lldb.debugger, lldb.target, lldb.process, lldb.thread, and lldb.frame to not be initialized.
llvm-svn: 172873
Added a unique integer identifier to processes. Some systems, like JTAG or other simulators, might always assign the same process ID (pid) to the processes that are being debugged. In order for scripts and the APIs to uniquely identify the processes, there needs to be another ID. Now the SBProcess class has:
uint32_t SBProcess::GetUniqueID();
This integer ID will help to truly uniquely identify a process and help with appropriate caching that can be associated with a SBProcess object.
llvm-svn: 172628
controlled by the --unwind-on-error flag, and --ignore-breakpoint which separately controls behavior when a called
function hits a breakpoint. For breakpoints, we don't unwind, we either stop, or ignore the breakpoint, which makes
more sense.
Also make both these behaviors globally settable through "settings set".
Also handle the case where a breakpoint command calls code that ends up re-hitting the breakpoint. We were recursing
and crashing. Now we just stop without calling the second command.
<rdar://problem/12986644>
<rdar://problem/9119325>
llvm-svn: 172503
Fixed an issue where the platform auto select code was changing the architecture and causing the wrong architecture to be assigned to the target.
llvm-svn: 172251
Should be that if any of the threads wants to stop, we should stop. The opposite was what was actually happening
<rdar://problem/12869725>
llvm-svn: 170153
equality can be strict or loose and we want code to
explicitly choose one or the other.
Also renamed the Compare function to IsEqualTo, to
avoid confusion.
<rdar://problem/12856749>
llvm-svn: 170152
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
Cleaned up the option parsing code to always pass around the short options as integers. Previously we cast this down to "char" and lost some information. I recently added an assert that would detect duplicate short character options which was firing during the test suite.
This fix does the following:
- make sure all short options are treated as "int"
- make sure that short options can be non-printable values when a short option is not required or when an option group is mixed into many commands and a short option is not desired
- fix the help printing to "do the right thing" in all cases. Previously if there were duplicate short character options, it would just not emit help for the duplicates
- fix option parsing when there are duplicates to parse options correctly. Previously the option parsing, when done for an OptionGroup, would just start parsing options incorrectly by omitting table entries and it would end up setting the wrong option value
llvm-svn: 169189
Prevent async and sync calls to get profile data from stomping on each other.
At the same time, don't use '$' as end delimiter per chunk of profile data.
llvm-svn: 168948
This commit does three things:
(a) introduces a new notification model for adding/removing/changing modules to a ModuleList, and applies it to the Target's ModuleList, so that we make sure to always trigger the right set of actions
whenever modules come and go in a target. Certain spots in the code still need to "manually" notify the Target for several reasons, so this is a work in progress
(b) adds a new capability to the Platforms: locating a scripting resources associated to a module. A scripting resource is a Python file that can load commands, formatters, ... and any other action
of interest corresponding to the loading of a module. At the moment, this is only implemented on Mac OS X and only for files inside .dSYM bundles - the next step is going to be letting
the frameworks themselves hold their scripting resources. Implementors of platforms for other systems are free to implement "the right thing" for their own worlds
(c) hooking up items (a) and (b) so that targets auto-load the scripting resources as the corresponding modules get loaded in a target. This has a few caveats at the moment:
- the user needs to manually add the .py file to the dSYM (soon, it will also work in the framework itself)
- if two modules with the same name show up during the lifetime of an LLDB session, the second one won't be able to load its scripting resource, but will otherwise work just fine
llvm-svn: 167569
I tracked down a leak that could happen when detaching from a process where the lldb_private::Process objects would stay around forever. This was caused by a eStateDetached event that was queued up on the lldb_private::Process private state thread listener. Since process events contain shared pointers to the process, this is dangerous if they don't get consume or cleared as having the lldb_private::Process class contain a collection of things that have a shared pointer to yourself is obviously bad.
To fix this I modified the Process::Finalize() function to clear this list. The actual thing that was holding onto the ModuleSP and thus the static archive, was a stack frame. Since the process wasn't going away, it still had thread objects and they still had frames. I modified the Thread::Destroy() to clear the stack frames to ensure this further doesn't happen.
llvm-svn: 166964
There was a generic catch-all type for path arguments
called "eArgTypePath," and a specialized version
called "eArgTypeFilename." It turns out all the
cases where we used eArgTypePath we could have
used Filename or we explicitly meant a directory.
I changed Path to DirectoryName, made it use the
directory completer, and rationalized the uses of
Path.
<rdar://problem/12559915>
llvm-svn: 166533
Added a new setting that allows a python OS plug-in to detect threads and provide registers for memory threads. To enable this you set the setting:
settings set target.process.python-os-plugin-path lldb/examples/python/operating_system.py
Then run your program and see the extra threads.
llvm-svn: 166244
LLDB changes argv[0] when debugging a symlink. Now we have the notion of argv0 in the target settings:
target.arg0 (string) =
There is also the program argument that are separate from the first argument that have existed for a while:
target.run-args (arguments) =
When running "target create <exe>", we will place the untouched "<exe>" into target.arg0 to ensure when we run, we run with what the user typed. This has been added to the ProcessLaunchInfo and all other needed places so we always carry around the:
- resolved executable path
- argv0
- program args
Some systems may not support separating argv0 from the resolved executable path and the ProcessLaunchInfo needs to carry all of this information along so that each platform can make that decision.
llvm-svn: 166137
enabled after we'd found a few bugs that were caused by shadowed
local variables; the most important issue this turned up was
a common mistake of trying to obtain a mutex lock for the scope
of a code block by doing
Mutex::Locker(m_map_mutex);
This doesn't assign the lock object to a local variable; it is
a temporary that has its dtor called immediately. Instead,
Mutex::Locker locker(m_map_mutex);
does what is intended. For some reason -Wshadow happened to
highlight these as shadowed variables.
I also fixed a few obivous and easy shadowed variable issues
across the code base but there are a couple dozen more that
should be fixed when someone has a free minute.
<rdar://problem/12437585>
llvm-svn: 165269
loaded at a random offset).
To get the kernel's UUID and load address I need to send a kdp
packet so I had to implement the kernel relocation (and attempt to
find the kernel if none was provided to lldb already) in ProcessKDP
-- but this code really properly belongs in DynamicLoaderDarwinKernel.
I also had to add an optional Stream to ConnectRemote so
ProcessKDP::DoConnectRemote can print feedback about the remote kernel's
UUID, load address, and notify the user if we auto-loaded the kernel via
the UUID.
<rdar://problem/7714201>
llvm-svn: 164881
Fixed an issue where if we call "Process::Destroy()" and the process is running, if we try to stop it and get "exited" back as the stop reason, we will still deliver the exited event.
llvm-svn: 163591