Revert the 32-process cap on Windows. When testing with Swift, we found
that there was a time reduction for testing with the higher load. This
should hopefully not matter much in practice. In the case that the
original problem with python remains with a high subprocess count, we
can easily revert this change.
It measures as such, and the reference docs agree.
I can't easily add a MCA test, because there's no mnemonic for it,
it can only be disassembled or created as a MCInst.
Similar to X86 D73230 & 46788a21f9
With this change, we can set dso_local in clang's -fpic -fno-semantic-interposition mode,
for default visibility external linkage non-ifunc-non-COMDAT definitions.
For such dso_local definitions, variable access/taking the address of a
function/calling a function will go through a local alias to avoid GOT/PLT.
Note: the 'S' inline assembly constraint refers to an absolute symbolic address
or a label reference (D46745).
Differential Revision: https://reviews.llvm.org/D101872
induction variable to be perfect
This patch allow more conditional branches to be considered as loop
guard, and so more loop nests can be considered perfect.
Reviewed By: bmahjour, sidbav
Differential Revision: https://reviews.llvm.org/D94717
Ensure we don't try to fold when one might be an opaque constant - the constant fold will fail and then the reverse fold will happen in DAGCombine.....
Sometimes disassembler picks _REV variants of instructions
over the plain ones, which in this case exposed an issue
that the _REV variants aren't being modelled as optimizable moves.
Address sanitizer can detect stack exhaustion via its SEGV handler, which is
executed on a separate stack using the sigaltstack mechanism. When libFuzzer is
used with address sanitizer, it installs its own signal handlers which defer to
those put in place by the sanitizer before performing additional actions. In the
particular case of a stack overflow, the current setup fails because libFuzzer
doesn't preserve the flag for executing the signal handler on a separate stack:
when we run out of stack space, the operating system can't run the SEGV handler,
so address sanitizer never reports the issue. See the included test for an
example.
This commit fixes the issue by making libFuzzer preserve the SA_ONSTACK flag
when installing its signal handlers; the dedicated signal-handler stack set up
by the sanitizer runtime appears to be large enough to support the additional
frames from the fuzzer.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D101824
Pointers escape when converted to integers, so a pointer produced by
converting an integer to a pointer must not be a local non-escaping
object.
Reviewed By: nikic, nlopes, aqjune
Differential Revision: https://reviews.llvm.org/D101541
Summary:
The allocator interface added in D97883 allows the RTL to allocate shared and
host-pinned memory from the cuda plugin. This patch adds support for these to
the runtime.
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D102000
This it to make more clear the difference between this and
an AliasAnalysis.
For example, given a sequence of subviews that create values
A -> B -> C -> d:
BufferViewFlowAnalysis::resolve(B) => {B, C, D}
AliasAnalysis::resolve(B) => {A, B, C, D}
Differential Revision: https://reviews.llvm.org/D100838
I've verified this with llvm-exegesis.
This is not limited to zero registers.
Refs:
AMD SOG 19h, 2.9.4 Zero Cycle Move
The processor is able to execute certain register to register
mov operations with zero cycle delay.
Agner,
22.13 Instructions with no latency
Register-to-register move instructions are resolved at
the register rename stage without using any execution units.
These instructions have zero latency. It is possible to do six such
register renamings per clock cycle, and it is even possible to
rename the same register multiple times in one clock cycle.
And remove the dedicated debug-iterator tests; we want to test this in all modes.
We have a CI step for testing the whole test suite with `--debug_level=1` now.
Part of https://reviews.llvm.org/D102003
And remove the dedicated debug-iterator test; we want to test this in all modes.
We have a CI step for testing the whole test suite with `--debug_level=1` now.
Part of https://reviews.llvm.org/D102003
Reapply b623df3c, which was reverted while reverting a different patch
with a breaking change. There are no underlying issues with this patch,
so no changes have been made to the original patch.
This reverts commit b11e4c9907.
gfx9 does not work with negative offsets, gfx10 works only with
aligned negative offsets, but not with unaligned negative offsets.
This is slightly more conservative than needed, gfx9 does support
negative offsets when a VGPR address is used and gfx10 supports
negative, unaligned offsets when an SGPR address is used, but we
do not make use of that with this patch.
Differential Revision: https://reviews.llvm.org/D101292
Retrying after revert and fix (removed implicit def flag from operand). Now
passes with expensive_checks enabled.
Since there is a single scratch resource descriptor for all shaders, if there is
a wave32 and a wave64 shader (for instance for VsFs pairs)
then the const_index_stride will be incorrect for wave32 shaders.
Differential Revision: https://reviews.llvm.org/D101830
Change-Id: Ie3b8b2921237968caca91527dd0c97b1b0cc0360
This patch is a fix for revision ce0c1f3c, which caused test failures on
bots without x86 as a registered target. This patch moves the test added
in the prior patch to the x86 folder, so that it only runs on bots with
the correct target available.
This patch converts llvm.memset intrinsic into Tail Predicated
Hardware loops for a target that supports the Arm M-profile
Vector Extension (MVE).
The llvm.memset is converted to a TP loop for both
constant and non-constant input sizes (of llvm.memset).
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D100435
This change allows the use of identifiers for image types
from `cl_khr_gl_msaa_sharing` freely in the kernel code if
the extension is not supported since they are not in the
list of the reserved identifiers.
This change also removed the need for pragma for the types
in the extensions since the spec does not require the pragma
uses.
Differential Revision: https://reviews.llvm.org/D100983
This patch fixes a crash in the compiler that occurs when certain
invalidated SDDbgValues are emitted. The cause of this was that we would
attempt to check the liveness of the debug value's operands, which
triggers an assert if any of those operands are invalid. This patch
changes this check such that it only occurs if the SDDbgValue is valid;
if not, the check is irrelevant anyway, so can be safely ignored.
Differential Revision: https://reviews.llvm.org/D101540
Based off a discussion on D89281 - where the AARCH64 implementations were being replaced to use funnel shifts.
Any target that has efficient funnel shift lowering can handle the shift parts expansion using the same expansion, avoiding a lot of duplication.
I've generalized the X86 implementation and moved it to TargetLowering - so far I've found that AARCH64 and AMDGPU benefit, but many other targets (ARM, PowerPC + RISCV in particular) could easily use this with a few minor improvements to their funnel shift lowering (or the folding of their target ops that funnel shifts lower to).
NOTE: I'm trying to avoid adding full SHIFT_PARTS legalizer handling as I think it might actually be possible to remove these opcodes in the medium-term and use funnel shift / libcall expansion directly.
Differential Revision: https://reviews.llvm.org/D101987
Since there is a single scratch resource descriptor for all shaders, if there is
a wave32 and a wave64 shader (for instance for VsFs pairs)
then the const_index_stride will be incorrect for wave32 shaders.
Differential Revision: https://reviews.llvm.org/D101830
Change-Id: Id8de5566b0d1a07a814e2e7db016df9d20bf6d2c