Synthetic sections don't belong to any input file, but still they
are input sections. Whenever problem occurs with relocations in
these sections lld crashes in error reporting, trying to print
input file name.
Differential revision: https://reviews.llvm.org/D30889
llvm-svn: 297711
With this we have a single section hierarchy. It is a bit less code,
but the main advantage will be in a future patch being able to handle
foo = symbol_in_obj;
in a linker script. Currently that fails since we try to find the
output section of symbol_in_obj. With this we should be able to just
return an InputSection from the expression.
llvm-svn: 297313
The list of all input sections was defined in SymbolTable class for a
historical reason. The list itself is not a template. However, because
SymbolTable class is a template, we needed to pass around ELFT to access
the list. This patch moves the list out of the class so that it doesn't
need ELFT.
llvm-svn: 296309
With this we complete the transition out of special output sections,
and with the previous patches it should be possible to merge
OutputSectionBase and OuputSection.
llvm-svn: 296023
With the current design an InputSection is basically anything that
goes directly in a OutputSection. That includes plain input section
but also synthetic sections, so this should probably not be a
template.
llvm-svn: 295993
We shouldn't report an error for R_*_NONE relocs since we're emitting
them when writing relocations to discarded sections.
Differential Revision: https://reviews.llvm.org/D30279
llvm-svn: 295936
In the target dependent code we already always return a int64_t. In
the target independent code we carefully use uintX_t, which has the
same result given 2 complement rules.
This just simplifies the code to use int64_t everywhere.
llvm-svn: 295263
This is a really horrible case. If a .eh_frame points to a discarded
section, it is not clear what is the correct thing to do.
It looks like ld.bfd discards the entire .eh_frame content and gold
discards the second relocation, leaving one frame with an fde that
refers to a bogus location. This is similar to what gold does.
llvm-svn: 295133
This reverts commit r295102.
In the link of seabios the assumption seems to be that the section has
an actual address, so this is not sufficient. Changing the assembly
code to add a "a" flag seems like the correct thing to do instead of
extending this hack.
Sorry about the noise.
Original message:
Relax the restriction on what relocations can be in a non-alloc section.
The main thing that they can't have is relocations that require the
creation of gots or plt. For now also accept R_PC.
Found while linking seabios.
llvm-svn: 295130
The main thing that they can't have is relocations that require the
creation of gots or plt. For now also accept R_PC.
Found while linking seabios.
llvm-svn: 295102
Unfortunately some consumers of our .o files produced with -r expect
only one section symbol per section. That is true of at least of go's
own linker.
Combining them is a somewhat convoluted process. We have to create a
symbol for every section since we don't know which ones will be
needed. The relocation sections also have to be written first to
handle the Elf_Rel addend.
I did consider a completely different approach:
We could remove the -r special case of relocation sections when
reading. We would instead have a copyRelocs function that is used
instead of scanRelocs. It would create a DynamicReloc for each
relocation and a RelocationSection for each input relocation section.
A complication of such change is that DynamicReloc would have to take
a section index and a input section instead of a symbol since with
-emit-relocs some DynamicReloc would hold relocations referring to the
dynamic symbol table and other to the static symbol table.
That would be a pretty big change, and if we do it it is probably
better to do it as a refactoring.
llvm-svn: 294816
with temporarily file name fix in testcase.
Original commit message:
-q, --emit-relocs - Generate relocations in output
Simplest implementation:
* no GC case,
* no "/DISCARD/" linkerscript command support.
This patch is extracted from D28612 / D29636,
Relative to PR31579.
Differential revision: https://reviews.llvm.org/D29663
llvm-svn: 294469
-q, --emit-relocs - Generate relocations in output
Simplest implementation:
* no GC case,
* no "/DISCARD/" linkerscript command support.
This patch is extracted from D28612 / D29636,
Relative to PR31579.
Differential revision: https://reviews.llvm.org/D29663
llvm-svn: 294464
With a synthetic merge section we can have, for example, a single
.rodata section with stings, fixed sized constants and non merge
constants.
I can be simplified further by not setting Entsize, but that is
probably better done is a followup patch.
This should allow some cleanup in the linker script code now that
every output section command maps to just one output section.
llvm-svn: 294005
Thunks are now implemented by redirecting the relocation to the
symbol S, to a symbol TS in a Thunk. The Thunk will transfer control
to S. This has the following implications:
- All the side-effects of Thunks happen within createThunks()
- Thunks are no longer stored in InputSections and Symbols no longer
need to hold a pointer to a Thunk
- The synthetic Thunk sections need to be merged into OutputSections
This implementation is almost a direct conversion of the existing
Thunks with the following exceptions:
- Mips LA25 Thunks are placed before the InputSection that defines
the symbol that needs a Thunk.
- All ARM Thunks are placed at the end of the OutputSection of the
first caller to the Thunk.
Range extension Thunks are not supported yet so it is optimistically
assumed that all Thunks can be reused.
This is a recommit of r293283 with a fixed comparison predicate as
std::merge requires a strict weak ordering.
Differential revision: https://reviews.llvm.org/D29327
llvm-svn: 293757
Thunks are now implemented by redirecting the relocation to the
symbol S, to a symbol TS in a Thunk. The Thunk will transfer control
to S. This has the following implications:
- All the side-effects of Thunks happen within createThunks()
- Thunks are no longer stored in InputSections and Symbols no longer
need to hold a pointer to a Thunk
- The synthetic Thunk sections need to be merged into OutputSections
This implementation is almost a direct conversion of the existing
Thunks with the following exceptions:
- Mips LA25 Thunks are placed before the InputSection that defines
the symbol that needs a Thunk.
- All ARM Thunks are placed at the end of the OutputSection of the
first caller to the Thunk.
Range extension Thunks are not supported yet so it is optimistically
assumed that all Thunks can be reused.
Differential Revision: https://reviews.llvm.org/D29129
llvm-svn: 293283
Previously we stored kept locals in a KeptLocalSyms arrays,
belonged to files.
Patch makes SymbolTableSection to store locals in Symbols member,
that already present and was used for globals.
SymbolTableSection already had NumLocals counter member, so change
itself is trivial.
That allows to simplify handling of -r,
Body::DynsymIndex is no more used as "symbol table index" for relocatable
output.
Change was suggested during review of D28773 and opens road for D28612.
Differential revision: https://reviews.llvm.org/D29021
llvm-svn: 292789
Previously we just crashed when had user defined
section .shstrtab, for example. Which name equals to synthetic one,
but have different type.
Testcase reveals an issue.
Differential revision: https://reviews.llvm.org/D28559
llvm-svn: 291765
Intention of change is to get rid of code duplication.
Decompressor was introduced in D28105.
Change allows to get rid of few methods relative to decompression.
Differential revision: https://reviews.llvm.org/D28106
llvm-svn: 291758
I thought for a while about how to remove it, but it looks like we
can just copy the file for now. Of course I'm not happy about that,
but it's just less than 50 lines of code, and we already have
duplicate code in Error.h and some other places. I want to solve
them all at once later.
Differential Revision: https://reviews.llvm.org/D27819
llvm-svn: 290062
This change seems to make LLD 0.6% faster when linking Clang with
debug info. I don't want us to have lots of local optimizations,
but this function is very hot, and the improvement is small but
not negligible, so I think it's worth doing.
llvm-svn: 288757
Some elf producers (dtrace) put this flag in relocation sections and
some (MC) don't. If we don't ignore the flag we end up with multiple
relocation sections poiting to the same section, which we don't
support.
llvm-svn: 288585
When -O0 is specified, we do not do section merging.
Though before this patch several sections were generated instead
of single, what is useless.
Differential revision: https://reviews.llvm.org/D27041
llvm-svn: 288151
The MipsGotSection::getPageEntryOffset calculates index of GOT entry
with a "page" address. Previously this method changes the state
of MipsGotSection because it modifies PageIndexMap field. That leads
to the unpredictable results if getPageEntryOffset called from multiple threads.
The patch makes getPageEntryOffset constant. To do so it calculates GOT
entry index but does not update PageIndexMap field. Later in the
MipsGotSection::writeTo method linker calculates "page" addresses and
writes them to the output.
llvm-svn: 288129
They return new vectors, but at the same time they mutate other vectors,
so returning values doesn't make much sense. We should just mutate two
vectors.
llvm-svn: 287979
Uncompressing section contents and spliting mergeable section contents
into smaller chunks are heavy tasks. They scan entire section contents
and do CPU-intensive tasks such as uncompressing zlib-compressed data
or computing a hash value for each section piece.
Luckily, these tasks are independent to each other, so we can do that
in parallel_for_each. The number of input sections is large (as opposed
to the number of output sections), so there's a large parallelism here.
Actually the current design to call uncompress() and splitIntoPieces()
in batch was chosen with doing this in mind. Basically what we need to
do here is to replace `for` with `parallel_for_each`.
It seems this patch improves latency significantly if linked programs
contain debug info (which in turn contain lots of mergeable strings.)
For example, the latency to link Clang (debug build) improved by 20% on
my machine as shown below. Note that ld.gold took 19.2 seconds to do
the same thing.
Before:
30801.782712 task-clock (msec) # 3.652 CPUs utilized ( +- 2.59% )
104,084 context-switches # 0.003 M/sec ( +- 1.02% )
5,063 cpu-migrations # 0.164 K/sec ( +- 13.66% )
2,528,130 page-faults # 0.082 M/sec ( +- 0.47% )
85,317,809,130 cycles # 2.770 GHz ( +- 2.62% )
67,352,463,373 stalled-cycles-frontend # 78.94% frontend cycles idle ( +- 3.06% )
<not supported> stalled-cycles-backend
44,295,945,493 instructions # 0.52 insns per cycle
# 1.52 stalled cycles per insn ( +- 0.44% )
8,572,384,877 branches # 278.308 M/sec ( +- 0.66% )
141,806,726 branch-misses # 1.65% of all branches ( +- 0.13% )
8.433424003 seconds time elapsed ( +- 1.20% )
After:
35523.764575 task-clock (msec) # 5.265 CPUs utilized ( +- 2.67% )
159,107 context-switches # 0.004 M/sec ( +- 0.48% )
8,123 cpu-migrations # 0.229 K/sec ( +- 23.34% )
2,372,483 page-faults # 0.067 M/sec ( +- 0.36% )
98,395,342,152 cycles # 2.770 GHz ( +- 2.62% )
79,294,670,125 stalled-cycles-frontend # 80.59% frontend cycles idle ( +- 3.03% )
<not supported> stalled-cycles-backend
46,274,151,813 instructions # 0.47 insns per cycle
# 1.71 stalled cycles per insn ( +- 0.47% )
8,987,621,670 branches # 253.003 M/sec ( +- 0.60% )
148,900,624 branch-misses # 1.66% of all branches ( +- 0.27% )
6.747548004 seconds time elapsed ( +- 0.40% )
llvm-svn: 287946
The function was used only within Relocations.cpp, but now we are
using it in many places, so this patch moves it to a file that fits
to the functionality.
llvm-svn: 287943
Offset between beginning of a .got section and _gp symbols used in MIPS
GOT relocations calculations. Usually the expression looks like
VA + Offset - GP, where VA is the .got section address, Offset - offset
of the GOT entry, GP - offset between .got and _gp. Also there two "magic"
symbols _gp_disp and __gnu_local_gp which hold the offset mentioned above.
These symbols might be referenced by MIPS relocations.
Now the linker always defines _gp symbol and uses hardcoded value for
its initialization. So offset between .got and _gp is 0x7ff0. The _gp_disp
and __gnu_local_gp defined if required and initialized by 0x7ff0.
In fact that is not correct because _gp symbol might be defined by a linker
script and holds arbitrary value. In that case we need to use this value
in relocation calculation and initialize _gp_disp and __gnu_local_gp
properly.
The patch fixes the problem and completes fixing the bug #30311.
https://llvm.org/bugs/show_bug.cgi?id=30311
Differential revision: https://reviews.llvm.org/D27036
llvm-svn: 287832
We have different functions to stringize objects to construct
error messages. For InputFile, we have getFilename, and for
InputSection, we have getName. You had to memorize them.
I think this is the case where the function overloading comes in handy.
This patch defines toString() functions that are overloaded for all these
types, so that you just call it in error().
Differential Revision: https://reviews.llvm.org/D27030
llvm-svn: 287787
MergeOutputSection class was a bit hard to use because it provdes
a series of finalize functions that have to be called in a right way
at a right time. It also intereacted with MergeInputSection, and the
logic was somewhat entangled between the two classes.
This patch simplifies it by providing only one finalize function.
Now, all you have to do is to call MergeOutputSection::finalize
when you have added all sections to the output section. Then, it
internally merges strings and initliazes StringPiece objects.
I think this is much easier to understand.
This patch also adds comments.
llvm-svn: 287314
MIPS GOT handling is very different from other targets so it is better
to keep the code in the separatre section class MipsGotSection. This
patch introduces the new section and moves all MIPS specific code from
GotSection to the new class. I did not rename fields and methods in the
MipsGotSection class to reduce the diff and plan to do that by the
separate commit.
Differential revision: https://reviews.llvm.org/D26733
llvm-svn: 287150
Relocations are the last thing that we wore storing a raw section
pointer to and parsing on demand.
With this patch we parse it only once and store a pointer to the
actual data.
The patch also changes where we store it. It is now in
InputSectionBase. Not all sections have relocations, but most do and
this simplifies the logic. It also means that we now only support one
relocation section per section. Given that that constraint is
maintained even with -r with gold bfd and lld, I think it is OK.
llvm-svn: 286459
Previously, we have both input and output section for .MIPS.abiflags.
Now we have only one class for .MIPS.abiflags, which is MipsAbiFlagsSection.
This class is a synthetic input section.
.MIPS.abiflags sections are handled as regular sections until
the control reaches Writer. Writer then aggregates all sections
whose type is SHT_MIPS_ABIFLAGS to create a single synthesized
input section. The synthesized section is then processed normally
as if it came from an input file.
llvm-svn: 286398
Previously, we have both input and output sections for .reginfo and
.MIPS.options. Now for each such sections we have one synthetic input
sections: MipsReginfoSection and MipsOptionsSection respectively.
Both sections are handled as regular sections until the control reaches
Writer. Writer then aggregates all sections whose type is SHT_MIPS_REGINFO
or SHT_MIPS_OPTIONS to create a single synthesized input section. In that
moment Writer also save GP0 value to the MipsGp0 field of the corresponding
ObjectFile. This value required for R_MIPS_GPREL16 and R_MIPS_GPREL32
relocations calculation.
Differential revision: https://reviews.llvm.org/D26444
llvm-svn: 286397
The ARM 32 and 64-bit ABI does not use 0 for undefined weak references
that are used in PC relative relocations. In particular:
- A branch relocation to an undefined weak resolves to the next
instruction. Effectively making the branch a no-op
- In all other cases the symbol resolves to the place so that S + A - P
resolves to A.
Differential Revision: https://reviews.llvm.org/D26240
llvm-svn: 286353
This is similar to what was done for InputSection.
With this the various fields are stored in host order and only
converted to target order when writing.
llvm-svn: 286327
A CommonInputSection is a section containing all common symbols.
That was an input section but was abstracted in a different way
than the synthetic input sections because it was written before
the synthetic input section was invented.
This patch rewrites CommonInputSection as a synthetic input section
so that it behaves better with other sections.
llvm-svn: 286053
We are going to have many more classes for linker-synthesized
input sections, so it's worth to be added to a separate file
than to the file for regular input sections.
llvm-svn: 285740
The example reported in PR30793 shows a case where gc reclaims
a SHF_TLS section, but it doesn't reclaim the section containing
the debug info for it.
This is expected, as we do not reclaim non-alloc sections
during the garbage collection phase (and this is not going to
change anytime soon, at least this is what I gathered last I
talked with Rafael about it).
So, we end up with a pending reference, thinking that the input
was invalid (which is not true, as it's GC that removed the
SHT_TLS section, and therefore didn't create the PT_TLS *segment*
for it). In cases like this, just assign a VA of zero at relocation
time instead of error'ing out (this is what gold does as well, FWIW).
Differential Revision: https://reviews.llvm.org/D26201
llvm-svn: 285735
Instead of storing a pointer, store the members we need.
The reason for doing this is that it makes it far easier to create
synthetic sections. It also avoids reading data from files multiple
times., which might help with cross endian linking and host
architectures with slow unaligned access.
There are obvious compacting opportunities, but this already has mixed
results even on native x86_64 linking.
There is also the possibility of better refactoring the code for
handling common symbols, but this already shows that a custom class is
not necessary.
llvm-svn: 285148