Summary:
This adds the necessary target code to be able to run the ir translator.
Lowering function arguments and returns is a nop and there is no support
for RegBankSelect.
Reviewers: arsenm, qcolombet
Subscribers: arsenm, joker.eph, vkalintiris, llvm-commits
Differential Revision: http://reviews.llvm.org/D19077
llvm-svn: 266356
Summary:
This pass is unnecessary and overly conservative. It was motivated by
situations like
def %vreg0:SGPR_32
...
if-block:
..
def %vreg1:SGPR_32
...
else-block:
...
use %vreg0:SGPR_32
...
and similar situations with uses after the non-uniform control flow, where
we are not allowed to assign %vreg0 and %vreg1 to the same physical register,
even though in the original, thread/workitem-based CFG, it looks like the
live ranges of these registers do not overlap.
However, by the time register allocation runs, we have moved to a wave-based
CFG that accurately represents the fact that the wave may run through both
the if- and the else-block. So the live ranges of %vreg0 and %vreg1 already
overlap even without the SIFixSGPRLiveRanges pass.
In addition to proving this change correct, I have tested it with Piglit
and a small number of other tests.
Reviewers: arsenm, tstellarAMD
Subscribers: MatzeB, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19041
llvm-svn: 266345
Summary:
Whole quad mode is already enabled for pixel shaders that compute
derivatives, but it must be suspended for instructions that cause a
shader to have side effects (i.e. stores and atomics).
This pass addresses the issue by storing the real (initial) live mask
in a register, masking EXEC before instructions that require exact
execution and (re-)enabling WQM where required.
This pass is run before register coalescing so that we can use
machine SSA for analysis.
The changes in this patch expose a problem with the second machine
scheduling pass: target independent instructions like COPY implicitly
use EXEC when they operate on VGPRs, but this fact is not encoded in
the MIR. This can lead to miscompilation because instructions are
moved past changes to EXEC.
This patch fixes the problem by adding use-implicit operands to
target independent instructions. Some general codegen passes are
relaxed to work with such implicit use operands.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: MatzeB, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18162
llvm-svn: 263982
Patch by: Konstantin Zhuravlyov
Summary: Tools, such as debugger, need to pause execution based on user input (i.e. breakpoint). In order to do this, two S_NOP instructions are inserted for each high level source statement: one before first isa instruction of high level source statement, and one after last isa instruction of high level source statement. Further, debugger may replace S_NOP instructions with S_TRAP instructions based on user input.
Reviewers: tstellarAMD, arsenm
Subscribers: echristo, dblaikie, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D17454
llvm-svn: 262579
Changes:
- Added disassembler project
- Fixed all decoding conflicts in .td files
- Added DecoderMethod=“NONE” option to Target.td that allows to
disable decoder generation for an instruction.
- Created decoding functions for VS_32 and VReg_32 register classes.
- Added stubs for decoding all register classes.
- Added several tests for disassembler
Disassembler only supports:
- VI subtarget
- VOP1 instruction encoding
- 32-bit register operands and inline constants
[Valery]
One of the point that requires to pay attention to is how decoder
conflicts were resolved:
- Groups of target instructions were separated by using different
DecoderNamespace (SICI, VI, CI) using similar to AssemblerPredicate
approach.
- There were conflicts in IMAGE_<> instructions caused by two
different reasons:
1. dmask wasn’t specified for the output (fixed)
2. There are image instructions that differ only by the number of
the address components but have the same encoding by the HW spec. The
actual number of address components is determined by the HW at runtime
using image resource descriptor starting from the VGPR encoded in an
IMAGE instruction. This means that we should choose only one instruction
from conflicting group to be the rule for decoder. I didn’t find the way
to disable decoder generation for an arbitrary instruction and therefore
made a onelinear fix to tablegen generator that would suppress decoder
generation when DecoderMethod is set to “NONE”. This is a change that
should be reviewed and submitted first. Otherwise I would need to
specify different DecoderNamespace for every instruction in the
conflicting group. I haven’t checked yet if DecoderMethod=“NONE” is not
used in other targets.
3. IMAGE_GATHER decoder generation is for now disabled and to be
done later.
[/Valery]
Patch By: Sam Kolton
Differential Revision: http://reviews.llvm.org/D16723
llvm-svn: 261185
Re-commit of r258951 after fixing layering violation.
The BPF and WebAssembly backends had identical code for emitting errors
for unsupported features, and AMDGPU had very similar code. This merges
them all into one DiagnosticInfo subclass, that can be used by any
backend.
There should be minimal functional changes here, but some AMDGPU tests
have been updated for the new format of errors (it used a slightly
different format to BPF and WebAssembly). The AMDGPU error messages will
now benefit from having precise source locations when debug info is
available.
llvm-svn: 259498
Re-commit of r258951 after fixing layering violation.
The related LLVM patch adds a backend diagnostic type for reporting
unsupported features, this adds a printer for them to clang.
In the case where debug location information is not available, I've
changed the printer to report the location as the first line of the
function, rather than the closing brace, as the latter does not give the
user any information. This also affects optimisation remarks.
Differential Revision: http://reviews.llvm.org/D16590
llvm-svn: 259035
The BPF and WebAssembly backends had identical code for emitting errors
for unsupported features, and AMDGPU had very similar code. This merges
them all into one DiagnosticInfo subclass, that can be used by any
backend.
There should be minimal functional changes here, but some AMDGPU tests
have been updated for the new format of errors (it used a slightly
different format to BPF and WebAssembly). The AMDGPU error messages will
now benefit from having precise source locations when debug info is
available.
The implementation of DiagnosticInfoUnsupported::print must be in
lib/Codegen rather than in the existing file in lib/IR/ to avoid
introducing a dependency from IR to CodeGen.
Differential Revision: http://reviews.llvm.org/D16590
llvm-svn: 258951
Summary:
It is off by default, but can be used
with --misched=si
Patch by: Axel Davy
Reviewers: arsenm, tstellarAMD, nhaehnle
Subscribers: nhaehnle, solenskiner, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D11885
llvm-svn: 257609
Summary:
We were previously selecting all constant loads to SMRD instructions and legalizing
the SMRDs with non-uniform addresses during the SIFixSGPRCopesPass.
This new solution is more simple and also generates much better code, because
the instruction selector is able to take advantage of all the MUBUF addressing
modes that are legalization pass wasn't able to.
We also no longer need to generate v_add_* instructions when we
have a uniform pointer and a non-uniform offset, as this is now folded into the
MUBUF instruction during instruction selection.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15425
llvm-svn: 255672
Summary:
This allows us to remove the END_OF_TEXT_LABEL hack we had been using
and simplifies the fixups used to compute the address of constant
arrays.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D15257
llvm-svn: 255204
It does not work because of emergency stack slots.
This pass was supposed to eliminate dummy registers for the
spill instructions, but the register scavenger can introduce
more during PrologEpilogInserter, so some would end up
left behind if they were needed.
The potential for spilling the scratch resource descriptor
and offset register makes doing something like this
overly complicated. Reserve registers to use for the resource
descriptor and use them directly in eliminateFrameIndex.
Also removes creating another scratch resource descriptor
when directly selecting scratch MUBUF instructions.
The choice of which registers are reserved is temporary.
For now it attempts to pick the next available registers
after the user and system SGPRs.
llvm-svn: 254329
Mark kernels that use certain features that require user
SGPRs to support with kernel attributes. We need to know
before instruction selection begins because it impacts
the kernel calling convention lowering.
For now this only detects the workitem intrinsics.
llvm-svn: 252323
The pass adds new kernel arguments for image attributes, and
resolves calls to dummy attribute and resource id getter functions.
Patch by: Zoltan Gilian
llvm-svn: 244372