This was previously piggybacking on whatever happened to be the last
location set on CGDebugInfo/DIBuilder, which was wrong (it was often the
current location, such as the 'fn()' call site, not the end of the
block). With my improvements to set/unset the location in a scoped
manner (r225000) this went from a bad quality situation, to a crash.
Fixing this goes part-way to unblocking the recommit of r225000.
It's likely that any call to CodeGenFunction::StartFunction without the
CurEHLocation set represents a similar bug or risk of a bug. Perhaps
there are some callers that know they won't generate EH cleanups, but
I'm not sure.
I considered a generic catch-fix in StartFunction (just fallback to the
GlobalDecl's location) but that seemed like it'd mask bugs where the EH
location shouldn't be the same as the decl's location (& indeed by not
using that stop-gap I found this bug). We'll see how long I can hold out
on the generic catch-all. I might eventually be able to add an assertion
in.
llvm-svn: 225845
The backend now assumes that all immediates are integers. This allows
us to simplify immediate handling code, becasue we no longer need to
handle fp and integer immediates differently.
llvm-svn: 225844
Even before I sunk the debug flag into the opt tool this had been made
obsolete by factoring the pass and analysis managers into a single set
of templates that all used the core flag. No functionality changed here.
llvm-svn: 225842
and expose the necessary hooks in the API directly.
This makes it much cleaner for example to log the usage of a pass
manager from a library. It also makes it more obvious that this
functionality isn't "optional" or "asserts-only" for the pass manager.
llvm-svn: 225841
This now handles both 32 and 64-bit element sizes.
In this version, the test are in vector-shuffle-512-v8.ll, canonicalized by
Chandler's update_llc_test_checks.py.
Part of <rdar://problem/17688758>
llvm-svn: 225838
getNextFile used to have a complex logic to determine which file
should be processed by the Resolver on next iteration.
Now, it is just a sequential accessor to the internal array and
provides no sensible feature.
This patch also removes InputGraph::getGroupSize and InputGraph::
skipGroup to simplify the code.
llvm-svn: 225832
This is currently controlled by a setting:
(lldb) settings set target.process.python-os-plugin-path <path>
Or clearing it with:
(lldb) settings clear target.process.python-os-plugin-path
The process will now reload the OperatingSystem plug-in.
This was implemented by:
- adding the ability to set a notify callback for when an option value is changed
- added the ability for the process plug-in to load the operating system plug-in on the fly
- fixed bugs in the Process::GetStatus() so all threads are displayed if their thread IDs are larger than 32 bits
- adding a callback in ProcessProperties to tell when the "python-os-plugin-path" is changed by the user
- fixing a crasher in ProcessMachCore that happens when updating the thread list when the OS plugin is reloaded
llvm-svn: 225831
This adds assembly and bitcode support for `MDLocation`. The assembly
side is rather big, since this is the first `MDNode` subclass (that
isn't `MDTuple`). Part of PR21433.
(If you're wondering where the mountains of testcase updates are, we
don't need them until I update `DILocation` and `DebugLoc` to actually
use this class.)
llvm-svn: 225830
This requires a new hook to prevent expanding sqrt in terms
of rsqrt and reciprocal. v_rcp_f32, v_rsq_f32, and v_sqrt_f32 are
all the same rate, so this expansion would just double the number
of instructions and cycles.
llvm-svn: 225828
Only do for f32 since I'm unclear on both what this is expecting
for the refinement steps in terms of accuracy, and what
f64 instruction actually provides.
llvm-svn: 225827
At the same time, perform a number of simplifications:
- Rename go.tools directory to gotools.
- Import only the go directory; all required Go analysis code and
its dependencies have now been moved to this directory.
llvm-svn: 225825
Add a new subclass of `UniquableMDNode`, `MDLocation`. This will be the
IR version of `DebugLoc` and `DILocation`. The goal is to rename this
to `DILocation` once the IR classes supersede the `DI`-prefixed
wrappers.
This isn't used anywhere yet. Part of PR21433.
llvm-svn: 225824
Speculating things is generally good. SI+ has instructions for these
for 32-bit values. This is still probably better even with the expansion
for 64-bit values, although it is odd that this callback doesn't have
the size as a parameter.
llvm-svn: 225822
The issue was introduced in r214638:
+ for (auto &BSIter : BlocksSchedules) {
+ scheduleBlock(BSIter.second.get());
+ }
Because BlocksSchedules is a DenseMap with BasicBlock* keys, blocks are
scheduled in non-deterministic order, resulting in unpredictable IR.
Patch by Daniel Reynaud!
llvm-svn: 225821
This was already done in clang, this commit now uses the integrated
assembler as default when using LLVM tools directly.
A number of test cases deliberately using an invalid instruction in
inline asm now have to use -no-integrated-as.
llvm-svn: 225820
This was already done in clang, this commit now uses the integrated
assembler as default when using LLVM tools directly.
A number of test cases using inline asm had to be adapted, either by
updating the expected output, or by using -no-integrated-as (for such
tests that deliberately use an invalid instruction in inline asm).
llvm-svn: 225819
This change ensures that the values that represent the array size of a
multi-dimensional access are correctly sign-extended when used to compute a
memory address used in the run-time alias check.
To make the test case more readable, we name the instructions that we generate.
llvm-svn: 225818
No functional changes, I'm just going to be doing a lot of work in these files and it would be helpful if they had more current LLVM style.
llvm-svn: 225817
conflicting attribute, warn about the conflict and pick a "winning"
attribute to preserve, instead of emitting an error. This matches the
behavior when the conflicting attributes are on different declarations.
Along the way I discovered that conflicts involving __forceinline were
reported as 'always_inline' (alternate spelling, same attribute) so
fixed that up to report the attribute as spelled in the source.
llvm-svn: 225813
The max loop depth was incorrectly computed for scops that contain a
block from a loop but do not contain the entire loop. We need to
check that the full loop is contained in the region when computing
the max loop depth.
These scops occur when a region containing an inner loop is expanded
to include some blocks from the outer loop, but it cannot be fully
expanded to contain the outer loop because the region containing the
outer loop is invalid.
Differential Revision: http://reviews.llvm.org/D6913
llvm-svn: 225812
The ppc64le platform will emit a .localentry directive. This is triggering
a false-positive against a CHECK-NOT: .loc in multiline.ll.
Add a space "{{ }}" to the check-not line to allow for arguments, and
prevent .localentry from matching.
Differential Revision: http://reviews.llvm.org/D6935
llvm-svn: 225810
This commit does two things:
1. Refactors PPCFastISel to use more of the common infrastructure for call
lowering (this lets us take advantage of this common code for lowering some
common intrinsics, stackmap/patchpoint among them).
2. Adds support for stackmap/patchpoint lowering. For the most part, this is
very similar to the support in the AArch64 target, with the obvious differences
(different registers, NOP instructions, etc.). The test cases are adapted
from the AArch64 test cases.
One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).
StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!
llvm-svn: 225808
When computing the call-site offset, use AP.CurrentFnSymForSize instead of
AP.CurrentFnSym. There should be no change for other targets, but this is
necessary for generating valid expressions for PPC64/ELF.
llvm-svn: 225807
While, generally speaking, the process of lowering arguments for a patchpoint
is the same as lowering a regular indirect call, on some targets it may not be
exactly the same. Targets may not, for example, want to add additional register
dependencies that apply only to making cross-DSO calls through linker stubs,
may not want to load additional registers out of function descriptors, and may
not want to add additional side-effect-causing instructions that cannot be
removed later with the call itself being generated.
The PowerPC target will use this in a future commit (for all of the reasons
stated above).
llvm-svn: 225806
Some targets, PowerPC for example, have pseudo-registers (such as that used to
represent the rounding mode), that don't have DWARF register numbers or a
register class. These are used only for internal dependency tracking, and
should not appear in the recorded live-outs. This adds a callback allowing the
target to pre-process the live-out mask in order to remove these kinds of
registers so that the StackMaps code does not complain about them and/or
attempt to include them in the output.
This will be used by the PowerPC target in a future commit.
llvm-svn: 225805
We really need a separate 64-bit version of this instruction so that it can be
marked as clobbering LR8 (instead of just LR). No change in functionality
(although the verifier might be slightly happier), however, it is required for
stackmap/patchpoint support. Thus, this will be covered by stackmap test cases
once those are added.
llvm-svn: 225804
If a module map contains
framework module * [extern_c] {}
We will now infer [extern_c] on the inferred framework modules (we
already inferred [system] as a special case).
llvm-svn: 225803
I'm not sure why we have OS.indent(Indent+2) for the system attribute,
but presumably we want the same behaviour for all attributes...
llvm-svn: 225802
For registers that have DWARF numbers (like CA, which is really part of XER),
add them. Also, RM is not an SPR, and the declaration hack (where it is
declared as an SPR with an arbitrary number) is not needed, so just declare it
as a register.
NFC; although CA's register number will be needed when stackmap/patchpoint
support is added.
llvm-svn: 225800