type that turns one type into another. This is used as the basis to
implement __underlying_type properly - with TypeSourceInfo and proper
behavior in the face of templates.
llvm-svn: 132017
The general out-of-line case (including explicit instantiation mostly
works except that the definition is being lost somewhere between the AST
and CodeGen, so the definition is never emitted.
llvm-svn: 131933
They are actually grammatically considered definitions and parsed
accordingly.
This fixes the outstanding bugs regarding defaulting functions after
their declarations.
We now really nicely diagnose the following construct (try it!)
int foo() = delete, bar;
Still todo: Defaulted functions other than default constructors
Test cases (including for the above construct)
llvm-svn: 131228
Allow to include or exclude code depending on if a symbol exists or not. Just like a #ifdef but for C/C++ symbols.
More doc: http://msdn.microsoft.com/en-us/library/x7wy9xh3(v=VS.100).aspx
Support at class and namespace scopes will be added later.
llvm-svn: 131014
Explictly defaultedness is correctly reflected on the AST, but there are
no changes to how that affects the definition of functions or much else
really.
llvm-svn: 130974
parameters on the floor in certain cases:
class X {
template <typename T> friend typename A<T>::Foo;
};
This was parsed as a *non* template friend declaration some how, and
received an ExtWarn. Fixing the parser to actually provide the template
parameters to the freestanding declaration parse triggers the code which
specifically looks for such constructs and hard errors on them.
Along the way, this prevents us from trying to instantiate constructs
like the above inside of a outer template. This is important as loosing
the template parameters means we don't have a well formed declaration
and template instantiation will be unable to rebuild the AST. That fixes
a crash in the GCC test suite.
llvm-svn: 130772
As might be surmised from their names, these aren't type traits, they're
expression traits. Amazingly enough, they're expression traits that we
have, and fully implement. These "type" traits are even parsed from the
same tokens as the expression traits. Luckily, the parser only tried the
expression trait parsing for these tokens, so this was all just a pile
of dead code.
llvm-svn: 130643
as a keyword for the __is_signed type trait. Cope with this conflict
via some hackish recovery: if we see a declaration of the form
static const bool __is_signed
then we stop treating __is_signed as a keyword and instead treat it as
an identifier. It's ugly, but it's better than making the __is_signed
type trait conditional on some language flag. Fixes PR9804.
llvm-svn: 130399
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
Patch authored by John Wiegley.
These type traits are used for parsing code that employs certain features of
the Embarcadero C++ compiler. Several of these constructs are also desired by
libc++, according to its project pages (such as __is_standard_layout).
llvm-svn: 130342
in the classification of template names and using declarations. We now
properly typo-correct the leading identifiers in statements to types,
templates, values, etc. As an added bonus, this reduces the number of
lookups required for disambiguation.
llvm-svn: 130288
invalid expression rather than the far-more-generic "error". Fixes a
mild regression in error recovery uncovered by the GCC testsuite.
llvm-svn: 130128
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
This fixes 1 error when parsing MSVC 2008 headers with clang.
Must "return true;" even if it is a warning because the rest of the code path assumes that SS is set to something. The parser will get back on its feet and continue parsing the rest of the declaration correctly so it is not a problem.
llvm-svn: 130088
performs name lookup for an identifier and resolves it to a
type/expression/template/etc. in the same step. This scheme is
intended to improve both performance (by reducing the number of
redundant name lookups for a given identifier token) and error
recovery (by giving Sema a chance to correct type names before the
parser has decided that the identifier isn't a type name). For
example, this allows us to properly typo-correct type names at the
beginning of a statement:
t.c:6:3: error: use of undeclared identifier 'integer'; did you mean
'Integer'?
integer *i = 0;
^~~~~~~
Integer
t.c:1:13: note: 'Integer' declared here
typedef int Integer;
^
Previously, we wouldn't give a Fix-It because the typo correction
occurred after the parser had checked whether "integer" was a type
name (via Sema::getTypeName(), which isn't allowed to typo-correct)
and therefore decided to parse "integer * i = 0" as an expression. By
typo-correcting earlier, we typo-correct to the type name Integer and
parse this as a declaration.
Moreover, in this context, we can also typo-correct identifiers to
keywords, e.g.,
t.c:7:3: error: use of undeclared identifier 'vid'; did you mean
'void'?
vid *p = i;
^~~
void
and recover appropriately.
Note that this is very much a work-in-progress. The new
Sema::ClassifyName is only used for expression-or-declaration
disambiguation in C at the statement level. The next steps will be to
make this work for the same disambiguation in C++ (where
functional-style casts make some trouble), then push it
further into the parser to eliminate more redundant name lookups.
Fixes <rdar://problem/7963833> for C and starts us down the path of
<rdar://problem/8172000>.
llvm-svn: 130082
'__is_literal' type trait for GCC compatibility. At least one relased
version if libstdc++ uses this name for the trait despite it not being
documented anywhere.
llvm-svn: 130078
This introduces a few APIs on the AST to bundle up the standard-based
logic so that programmatic clients have access to exactly the same
behavior.
There is only one serious FIXME here: checking for non-trivial move
constructors and move assignment operators. Those bits need to be added
to the declaration and accessors provided.
This implementation should be enough for the uses of __is_trivial in
libstdc++ 4.6's C++98 library implementation.
Ideas for more thorough test cases or any edge cases missing would be
appreciated. =D
llvm-svn: 130057