SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
This patch was originally committed as b8a3c34eee, but broke the
modules build, as LoopAccessAnalysis was using the Expander.
The code-gen part of LAA was moved to lib/Transforms recently, so this
patch can be landed again.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
Summary: Currenlty BPI unconditionally creates post dominator tree each time. While this is not incorrect we can save compile time by reusing existing post dominator tree (when it's valid) provided by analysis manager.
Reviewers: skatkov, taewookoh, yrouban
Reviewed By: skatkov
Subscribers: hiraditya, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78987
Summary:
Passes ORE, BPI, BFI are not being preserved by Loop passes, hence it
is incorrect to retrieve these passes as cached.
This patch makes the loop passes in question compute a new instance.
In some of these cases, however, it may be beneficial to change the Loop pass to
a Function pass instead, similar to the change for LoopUnrollAndJam.
Reviewers: chandlerc, dmgreen, jdoerfert, reames
Subscribers: mehdi_amini, hiraditya, zzheng, steven_wu, dexonsmith, Whitney, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72891
It appears to be rather useful when analyzing Loops with multiple
deoptimizing exits, perhaps merged ones.
For now it is used in LoopPredication, will be adding more uses
in other loop passes.
Reviewers: asbirlea, fhahn, skatkov, spatel, reames
Reviewed By: reames
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72754
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
We may end up with a case where we have a widenable branch above the loop, but not all widenable branches within the loop have been removed. Since a widenable branch inhibit SCEVs ability to reason about exit counts (by design), we have a tradeoff between effectiveness of this optimization and allowing future widening of the branches within the loop. LoopPred is thought to be one of the most important optimizations for range check elimination, so let's pay the cost.
With the widenable condition construct, we have the ability to reason about branches which can be 'widened' (i.e. made to fail more often). We've got a couple o transforms which leverage this. This patch just cleans up the API a bit.
This is prep work for generalizing our definition of a widenable branch slightly. At the moment "br i1 (and A, wc()), ..." is considered widenable, but oddly, neither "br i1 (and wc(), B), ..." or "br i1 wc(), ..." is. That clearly needs addressed, so first, let's centralize the code in one place.
Unswitch (and other loop transforms) like to generate loop exit blocks with unconditional successors, and phi nodes (LCSSA, or simple multiple exiting blocks sharing an exit). Generalize the "likely very rare exit" check slightly to handle this form.
This implements a version of the predicateLoopExits transform from IndVarSimplify extended to exploit widenable conditions - and thus be much wider in scope of legality. The code structure ends up being almost entirely different, so I chose to duplicate this into the LoopPredication pass instead of trying to reuse the code in the IndVars.
The core notions of the transform are as follows:
If we have a widenable condition which controls entry into the loop, we're allowed to widen it arbitrarily. Given that, it's simply a *profitability* question as to what conditions to fold into the widenable branch.
To avoid pass ordering issues, we want to avoid widening cases that would otherwise be dischargeable. Or... widen in a form which can still be discharged. Thus, we phrase the transform as selecting one analyzeable exit from the set of analyzeable exits to keep. This avoids creating pass ordering complexities.
Since none of the above proves that we actually exit through our analyzeable exits - we might exit through something else entirely - we limit ourselves to cases where a) the latch is analyzeable and b) the latch is predicted taken, and c) the exit being removed is statically cold.
Differential Revision: https://reviews.llvm.org/D69830
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
We had a subtle, but nasty bug in our definition of a widenable branch, and thus in the transforms which used that utility. Specifically, we returned true for any branch which included a widenable condition within it's condition, regardless of whether that widenable condition also had other uses.
The problem is that the result of the WC() call is defined to be one particular value. As such, all users must agree as to what that value is. If we widen a branch without also updating *all other users* of the WC in the same way, we have broken the required semantics.
Most of the textual diff is updating existing transforms not to leave dead uses hanging around. They're largely NFC as the dead instructions would be immediately deleted by other passes. The reason to make these changes is so that the transforms preserve the widenable branch form.
In practice, we don't get bitten by this only because it isn't profitable to CSE WC() calls and the lowering pass from guards uses distinct WC calls per branch.
Differential Revision: https://reviews.llvm.org/D69916
D63921 requires getExitEdges fills a vector of Edge pairs where
BasicBlocks are not constant.
The rest Loop API mostly returns non-const BasicBlocks, so to be more consistent with
other Loop API getExitEdges is modified to return non-const BasicBlocks as well.
This is an alternative solution to D64060.
Reviewers: reames, fhahn
Reviewed By: reames, fhahn
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64309
llvm-svn: 365437
A while back, I added support for NE latches formed by LFTR. I didn't think that quite through, as LFTR will also produce the inverse EQ form for some loops and I hadn't handled that. This change just adds handling for that case as well.
llvm-svn: 365419
We had versions of this code scattered around, so consolidate into one location.
Not strictly NFC since the order of intermediate results may change in some places, but since these operations are associatives, should not change results.
llvm-svn: 365259
This is a really silly bug that even a simple test w/an unconditional latch would have caught. I tried to guard against the case, but put it in the wrong if check. Oops.
llvm-svn: 362727
At the moment, LoopPredication completely bails out if it sees a latch of the form:
%cmp = icmp ne %iv, %N
br i1 %cmp, label %loop, label %exit
OR
%cmp = icmp ne %iv.next, %NPlus1
br i1 %cmp, label %loop, label %exit
This is unfortunate since this is exactly the form that LFTR likes to produce. So, go ahead and recognize simple cases where we can.
For pre-increment loops, we leverage the fact that LFTR likes canonical counters (i.e. those starting at zero) and a (presumed) range fact on RHS to discharge the check trivially.
For post-increment forms, the key insight is in remembering that LFTR had to insert a (N+1) for the RHS. CVP can hopefully prove that add nsw/nuw (if there's appropriate range on N to start with). This leaves us both with the post-inc IV and the RHS involving an nsw/nuw add, and SCEV can discharge that with no problem.
This does still need to be extended to handle non-one steps, or other harder patterns of variable (but range restricted) starting values. That'll come later.
Differential Revision: https://reviews.llvm.org/D62748
llvm-svn: 362282
The bug is that I didn't check whether the operand of the invariant_loads were themselves invariant. I don't know how this got missed in the patch and review. I even had an unreduced test case locally, and I remember handling this case, but I must have lost it in one of the rebases. Oops.
llvm-svn: 358688
The purpose of this patch is to eliminate a pass ordering dependence between LoopPredication and LICM. To understand the purpose, consider the following snippet of code inside some loop 'L' with IV 'i'
A = _a.length;
guard (i < A)
a = _a[i]
B = _b.length;
guard (i < B);
b = _b[i];
...
Z = _z.length;
guard (i < Z)
z = _z[i]
accum += a + b + ... + z;
Today, we need LICM to hoist the length loads, LoopPredication to make the guards loop invariant, and TrivialUnswitch to eliminate the loop invariant guard to establish must execute for the next length load. Today, if we can't prove speculation safety, we'd have to iterate these three passes 26 times to reduce this example down to the minimal form.
Using the fact that the array lengths are known to be invariant, we can short circuit this iteration. By forming the loop invariant form of all the guards at once, we remove the need for LoopPredication from the iterative cycle. At the moment, we'd still have to iterate LICM and TrivialUnswitch; we'll leave that part for later.
As a secondary benefit, this allows LoopPred to expose peeling oppurtunities in a much more obvious manner. See the udiv test changes as an example. If the udiv was not hoistable (i.e. we couldn't prove speculation safety) this would be an example where peeling becomes obviously profitable whereas it wasn't before.
A couple of subtleties in the implementation:
- SCEV's isSafeToExpand guarantees speculation safety (i.e. let's us expand at a new point). It is not a precondition for expansion if we know the SCEV corresponds to a Value which dominates the requested expansion point.
- SCEV's isLoopInvariant returns true for expressions which compute the same value across all iterations executed, regardless of where the original Value is located. (i.e. it can be in the loop) This implies we have a speculation burden to prove before expanding them outside loops.
- invariant_loads and AA->pointsToConstantMemory are two cases that SCEV currently does not handle, but meets the SCEV definition of invariance. I plan to sink this part into SCEV once this has baked for a bit.
Differential Revision: https://reviews.llvm.org/D60093
llvm-svn: 358684
This is a preparatory patch for D60093. This patch itself is NFC, but while preparing this I noticed and committed a small hoisting change in rL358419.
The basic structure of the new scheme is that we pass around the guard ("the using instruction"), and select an optimal insert point by examining operands at each construction point. This seems conceptually a bit cleaner to start with as it isolates the knowledge about insertion safety at the actual insertion point.
Note that the non-hoisting path is not actually used at the moment. That's not exercised until D60093 is rebased on this one.
Differential Revision: https://reviews.llvm.org/D60718
llvm-svn: 358434
If we have multiple range checks which can be predicated, hoist the and of the results outside the loop. This minorly cleans up the resulting IR, but the main motivation is as a building block for D60093.
llvm-svn: 358419
The code doesn't actually need any of the information about the widenable condition at this level. The only thing we need is to ensure the WC call is the last thing anded in, and even that is a quirk we should really look to remove.
llvm-svn: 357448
We'd been optimizing the case where the predicate was obviously true, do the same for the false case. Mostly just for completeness sake, but also may improve compile time in loops which will exit through the guard. Such loops are presumed rare in fastpath code, but may be present down untaken paths, so optimizing for them is still useful.
llvm-svn: 357408
LoopPredication was replacing the original condition, but leaving the instructions to compute the old conditions around. This would get cleaned up by other passes of course, but we might as well do it eagerly. That also makes the test output less confusing.
llvm-svn: 357406
This patch adds support of guards expressed as branches by widenable
conditions in Loop Predication.
Differential Revision: https://reviews.llvm.org/D56081
Reviewed By: reames
llvm-svn: 351805
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Summary:
LoopPredication is not profitable when the loop is known to always exit
through some block other than the latch block.
A coarse grained latch check can cause loop predication to predicate the
loop, and unconditionally deoptimize.
However, without predicating the loop, the guard may never fail within the
loop during the dynamic execution because the non-latch loop termination
condition exits the loop before the latch condition causes the loop to
exit.
We teach LP about this using BranchProfileInfo pass.
Reviewers: apilipenko, skatkov, mkazantsev, reames
Reviewed by: skatkov
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44667
llvm-svn: 328210
Add support of uge and sge latch condition to Loop Prediction for
reverse loops.
Reviewers: apilipenko, mkazantsev, sanjoy, anna
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42837
llvm-svn: 324589
Summary:
Currently, we only support predication for forward loops with step
of 1. This patch enables loop predication for reverse or
countdownLoops, which satisfy the following conditions:
1. The step of the IV is -1.
2. The loop has a singe latch as B(X) = X <pred>
latchLimit with pred as s> or u>
3. The IV of the guard is the decrement
IV of the latch condition (Guard is: G(X) = X-1 u< guardLimit).
This patch was downstream for a while and is the last series of patches
that's from our LP implementation downstream.
Reviewers: apilipenko, mkazantsev, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40353
llvm-svn: 319659
Summary:
Refactored the code to separate out common functions that are being
reused.
This is to reduce the changes for changes coming up wrt loop
predication with reverse loops.
This refactoring is what we have in our downstream code.
llvm-svn: 317324
Summary:
This patch allows us to predicate range checks that have a type narrower than
the latch check type. We leverage SCEV analysis to identify a truncate for the
latchLimit and latchStart.
There is also safety checks in place which requires the start and limit to be
known at compile time. We require this to make sure that the SCEV truncate expr
for the IV corresponding to the latch does not cause us to lose information
about the IV range.
Added tests show the loop predication over range checks that are of various
types and are narrower than the latch type.
This enhancement has been in our downstream tree for a while.
Reviewers: apilipenko, sanjoy, mkazantsev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39500
llvm-svn: 317269