This allows using virtual file mappings on the original SourceManager to
map in virtual module.map files. Without this patch, the ModuleMap
search will find a module.map file (as the FileEntry exists in the
FileManager), but will be unable to get the content from the
SourceManager (as ModuleMap previously created its own SourceManager).
Two problems needed to be fixed which this patch exposed:
1. Storing the inferred module map
When writing out a module, the ASTWriter stores the names of the files
in the main source manager; when loading the AST again, the ASTReader
errs out if such a file is found missing, unless it is overridden.
Previously CompilerInstance's compileModule method would store the
inferred module map to a temporary file; the problem with this approach
is that now that the module map is handled by the main source manager,
the ASTWriter stores the name of the temporary module map as source to
the compilation; later, when the module is loaded, the temporary file
has already been deleted, which leads to a compilation error. This patch
changes the inferred module map to instead inject a virtual file into
the source manager. This both saves some disk IO, and works with how the
ASTWriter/ASTReader handle overridden source files.
2. Changing test input in test/Modules/Inputs/*
Now that the module map file is handled by the main source manager, the
VerifyDiagnosticConsumer will not ignore diagnostics created while
parsing the module map file. The module test test/Modules/renamed.m uses
-I test/Modules/Inputs and triggers recursive loading of all module maps
in test/Modules/Inputs, some of which had conflicting names, thus
leading errors while parsing the module maps. Those diagnostics already
occur on trunk, but before this patch they would not break the test, as
they were ignored by the VerifyDiagnosticConsumer. This patch thus
changes the module maps that have been recently introduced which broke
the invariant of compatible modules maps in test/Modules/Inputs.
llvm-svn: 193314
This patch changes two things:
a) Allow a header to be part of multiple modules. The reasoning is that
in existing codebases that have a module-like build system, the same
headers might be used in several build targets. Simple reasons might be
that they defined different classes that are declared in the same
header. Supporting a header as a part of multiple modules will make the
transistion easier for those cases. A later step in clang can then
determine whether the two modules are actually compatible and can be
merged and error out appropriately. The later check is similar to what
needs to be done for template specializations anyway.
b) Allow modules to be stored in a directory tree separate from the
headers they describe.
Review: http://llvm-reviews.chandlerc.com/D1951
llvm-svn: 193151
Review: http://llvm-reviews.chandlerc.com/D1546.
I have picked up this patch form Lawrence
(http://llvm-reviews.chandlerc.com/D1063) and did a few changes.
From the original change description (updated as appropriate):
This patch adds a check that ensures that modules only use modules they
have so declared. To this end, it adds a statement on intended module
use to the module.map grammar:
use module-id
A module can then only use headers from other modules if it 'uses' them.
This enforcement is off by default, but may be turned on with the new
option -fmodules-decluse.
When enforcing the module semantics, we also need to consider a source
file part of a module. This is achieved with a compiler option
-fmodule-name=<module-id>.
The compiler at present only applies restrictions to the module directly
being built.
llvm-svn: 191283
This patch is the first step to make module-map-files modular (instead
of requiring a single "module.map"-file per include directory). This
step adds a new "extern module" declaration that enables
module-map-files to reference one another along with a very basic
implementation.
The next steps are:
* Combine this with the use-declaration (from
http://llvm-reviews.chandlerc.com/D1546) in order to only load module
map files required for a specific compilation.
* Add an additional flag to start with a specific module-map-file (instead
of requiring there to be at least one "module.map").
Review: http://llvm-reviews.chandlerc.com/D1637
llvm-svn: 190497
After r180934 we may initiate module map parsing for modules not related to the module what we are building,
make sure we ignore the header file info of headers from such modules.
First part of rdar://13840148
llvm-svn: 181489
Previously, we would clone the current diagnostic consumer to produce
a new diagnostic consumer to use when building a module. The problem
here is that we end up losing diagnostics for important diagnostic
consumers, such as serialized diagnostics (where we'd end up with two
diagnostic consumers writing the same output file). With forwarding,
the diagnostics from all of the different modules being built get
forwarded to the one serialized-diagnostic consumer and are emitted in
a sane way.
Fixes <rdar://problem/13663996>.
llvm-svn: 181067
The "magical" builtin headers are the headers we provide as part of
the C standard library, which typically comes from /usr/include. We
essentially merge our headers into that location (due to cyclic
dependencies). This change makes sure that, when header search finds
one of our builtin headers, we figure out which module it actually
lives in. This case is fairly rare; one ends up having to include one
of the few built-in C headers we provide before including anything
from /usr/include to trigger it. Fixes <rdar://problem/13787184>.
llvm-svn: 180934
Configuration macros are macros that are intended to alter how a
module works, such that we need to build different module variants
for different values of these macros. A module can declare its
configuration macros, in which case we will complain if the definition
of a configation macro on the command line (or lack thereof) differs
from the current preprocessor state at the point where the module is
imported. This should eliminate some surprises when enabling modules,
because "#define CONFIG_MACRO ..." followed by "#include
<module/header.h>" would silently ignore the CONFIG_MACRO setting. At
least it will no longer be silent about it.
Configuration macros are eventually intended to help reduce the number
of module variants that need to be built. When the list of
configuration macros for a module is exhaustive, we only need to
consider the settings for those macros when building/finding the
module, which can help isolate modules for various project-specific -D
flags that should never affect how modules are build (but currently do).
llvm-svn: 177466
In a module-enabled Cocoa PCH file, we spend a lot of time stat'ing the headers
in order to associate the FileEntries with their modules and support implicit
module import.
Use a more lazy scheme by enhancing HeaderInfoTable to store extra info about
the module that a header belongs to, and associate it with its module only when
there is a request for loading the header info for a particular file.
Part of rdar://13391765
llvm-svn: 176976
This allows resolving top-header filenames of modules to FileEntries when
we need them, not eagerly.
Note that that this breaks ABI for libclang functions
clang_Module_getTopLevelHeader / clang_Module_getNumTopLevelHeaders
but this is fine because they are experimental and not widely used yet.
llvm-svn: 176975
factor the realpath calls into FileManager::getCanonicalName() so we
can cache the results of this epically slow operation. 5% speedup on
my modules test, and realpath drops out of the profile.
llvm-svn: 173542
will have a shared library with the same name as its framework (and no
suffix!) within its .framework directory. Detect this both when
inferring the whole top-level framework and when parsing a module map.
llvm-svn: 172439
metadata for linking against the libraries/frameworks for imported
modules.
The module map language is extended with a new "link" directive that
specifies what library or framework to link against when a module is
imported, e.g.,
link "clangAST"
or
link framework "MyFramework"
Importing the corresponding module (or any of its submodules) will
eventually link against the named library/framework.
For now, I've added some placeholder global metadata that encodes the
imported libraries/frameworks, so that we can test that this
information gets through to the IR. The format of the data is still
under discussion.
llvm-svn: 172437
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
allowing a module map to be placed one level above the '.framework'
directories to specify that all .frameworks within that directory can
be inferred as framework modules. One can also specifically exclude
frameworks known not to work.
This makes explicit (and more restricted) behavior modules have had
"forever", where *any* .framework was assumed to be able to be built
as a module. That's not necessarily true, so we white-list directories
(with exclusions) when those directories have been audited.
llvm-svn: 167482
the various stakeholders bump up the reference count. In particular,
the diagnostics engine now keeps the DiagnosticOptions object alive.
llvm-svn: 166508
description. Previously, one could emulate this behavior by placing
the header in an always-unavailable submodule, but Argyrios guilted me
into expressing this idea properly.
llvm-svn: 165921
grammar requires a string-literal and not a user-defined-string-literal. The
two constructs are still represented by the same TokenKind, in order to prevent
a combinatorial explosion of different kinds of token. A flag on Token tracks
whether a ud-suffix is present, in order to prevent clients from needing to look
at the token's spelling.
llvm-svn: 152098
into using non-absolute system includes (<foo>)...
... and introduce another hack that is simultaneously more heineous
and more effective. We whitelist Clang-supplied headers that augment
or override system headers (such as float.h, stdarg.h, and
tgmath.h). For these headers, Clang does not provide a module
mapping. Instead, a system-supplied module map can refer to these
headers in a system module, and Clang will look both in its own
include directory and wherever the system-supplied module map
suggests, then adds either or both headers. The end result is that
Clang-supplied headers get merged into the system-supplied module for
the C standard library.
As a drive-by, fix up a few dependencies in the _Builtin_instrinsics
module.
llvm-svn: 149611
single attribute ("system") that allows us to mark a module as being a
"system" module. Each of the headers that makes up a system module is
considered to be a system header, so that we (for example) suppress
warnings there.
If a module is being inferred for a framework, and that framework
directory is within a system frameworks directory, infer it as a
system framework.
llvm-svn: 149143